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What is the question?
e Let X : RY — R be a stationary isotropic random field

For example (d = 2):
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Figure: Gaussian field with covariance function e~ IXI? |« = 100/21° (left),
Chi square field with 2 degree of freedom (right).
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What is the question?

e X:R—Risa stationary isotropic random field
e X is observed on a window T C R? trough its excursion sets
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Figure: Gaussian field with covariance function e~ <*IXI*, i = 100/21° (left)
and two excursion sets for u = 0 (center) and u = 1 (right).
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What is the question?

e X:RY%— R is a stationary isotropic random field

e X is observed on a window T trough its excursion sets at level
uelR

Ex(u) := X" ([u,0)) = {t e RY, X(t) > u}

we observe: | TN Ex(up) |for a fixed level uy: sparse information.

Problems
© Inference problem: is it possible to recover parameters of X?
® Testing: Is X Gaussian or not?

Tool: Geometry of the excursion sets TN Ex(u)
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A not so trivial question...
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Normalized Gaussian field with covariance function e~<°/IXII* (left) and two
excursion sets for u = 0 (center) and u = 1 (right).
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Normalized Student field with 4 degrees of freedom (left) and two excursion
sets for u = 0 (center) and u = 1 (right).
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Lipschitz-Killing curvatures in dimension 2

If d = 2, for a “nice” set A one can define 3 LK curvatures:

x(A): Euler characteristic (d = 2): (#(connected component) - #(holes))
of A, related to the connectivity,

o1(A): Surface area (perimeter d = 2) of A, related to the regularity,
0,(A): Area of A, related to the occupation density.

Applications: Cosmology, 2D x-ray images (detection of osteoporosis,
mammograms),...



Lipschitz-Killing curvatures

In dimension d > 2, there exist d + 1 - LK curvatures:

o4(A): Area of A: the Lebesgue measure of A,

04-1(A): Surface area of A, d — 1-dimensional Hausdorff measure of dA.
For 0 < k < d the k-dimensional Hausdorff measure of B C R? is
2 diam(U;) ) K

ok(B) == ———— lim inf
«(B) F(E+1)6-0 diam(U) <6 I‘EZN(

Ur.Ui2B

Q

2

where the infimum is taken over all countable covers of B by arbitrary
subsets U; of RY.
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Lipschitz-Killing curvatures for excursion sets

Let X be stationary, isotropic and a.s. twice differentiable such that the
probability density of (X(0),VX(0)) is bounded uniformly on R*".

LetueR, T C R , define the excursion set within T above level u:
Ef(u):={teT: X(t)>u}=TnNEx(u), Ex(u):=X"([u,+)).
and the level curves within T

Ll(u):={teT: X(t)=u} = TNIEx(uv), as.



Lipschitz-Killing curvatures for excursion sets

e Empirically accessible quantities:

C;—(U) = q,,}T)Gd(E;(U)) = "6 / ]l{X(t >u}dt
1

T . 1
Gt = G D) = ) g

Matlab functions: bwarea, bwperim (pixelization error)

e LK densities: involve parameters of the field
Ci(u):=E[C](u)], fork=d,d—1,VT.

Computing Cj(u) ?

Area v': Ci(u) = E[C](u)] =P(X(0) > u).
Others? : Tube formula, characteristic function...

Od—1 (dS)
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Statistical strategy

@ Observations: TN Ex(u) for T a large hypercube in RY,

® Compute: CJ (u), k=d—1,d

© Relate them to the parameters of the field: estimation / testing
procedures

Example: For d = 2, X a Gaussian random field X centered with unit
variance and second spectral moment 1 > 0
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Estimated Cj , (u) and Theoretical C; 5 (u).
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Statistical strategy: technical limitations

@ Difficult to establish “general CLT results” for C] (u),as T /R,

e Known in particular cases (Gaussian, chi-square for d = 1),
e Asymptotic variances not (always) explicit.
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Statistical strategy: technical limitations

© Difficult to establish “general CLT results” for C] (u), as T ~RY,
® Unreasonable assumption X centered with unit variance

e The mean/variance provide information on the LK curvatures
e From the excursion set: impossible to estimate mean/variance(X)
e |Image comparison: fields with distant mean/variances?
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Figure: Two excursion sets for u = 0 of the same realization of a Gaussian field (left:
initial field, right: shifted field).



Statistical strategy: technical limitations

© Difficult to establish “general CLT results” for C] (u), as T RY,

® Unreasonable assumption X centered with unit variance
Notion of effective level in the Gaussian case

Level u = 2200
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Figure: Synthetic digital mammograms. Excursion sets for a fixed level
u = 2200 (first row) and for the three adaptive levels ©, such that the effective
levels coincide (second row).
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Statistical strategy: technical limitations

@ Difficult to establish “general CLT results” for C] (u),as T~ R?
® Unreasonable assumption X centered with unit variance
® Pixelisation: Area v/, Surface area X
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Estimated Cj , {(u) and Theoretical Cj 5 (u)

12/23



Contents

@ Lipschitz-Killing curvatures for excursion sets

@ Pixelisation: Computing the surface area from discrete points

13/23



Polytopic tessellations based on point clouds

{a) Hexagones and trun-
cated triangles lattice

o o o
=] o] o]
o o o

{b) Square lattice

{c) Voronoi tessellation

Figure: Three examples of tilings with a particular choice of reference points.

Let ¢ be a set of convex, closed polytopes that tessellates RY, let
HT={(P,P*): Pc s#,PC T} bea point-referenced honeycomb.

e 04(P1NP2) =0, for any Py # P, € . and for Py, P, adjacent, then

Og—1 (P1 N P2) > 0.
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Estimated area and surface area on point clouds

Define . 1
AHOT) N
C u) = —— 04(P)Lx(pr
d ( ) Gd(T) Pgipr d( ) Xz
and
- 1
D) O4—1(P1 0 P2) L x(p)<uex(py)-

- Gd(T) P1,P2€%T
P1#£P;
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Estimated area and surface area on point clouds
e (Almost) unibiased area

Od ( Upcer P )
o4(T)

e For the surface area? It has been reported (Miller (1999), Biermé
and Desolneux (2021)) for d = 2, specific tilings and particular fields

E[C{" D (u)] = cilu). v

E[C{T (W) . Ciaw).

0
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A result on crossings: P(X(P}) < u < X(P3))

Theorem (Cotsakis, Di Bernardino, D.)
Fixw € 9B and u € R,

c',iL“o;P(X(O) < u< X(qw)) = Cész(U)’
wnere =27 ([5;’21)

Fix € € (0,1), under additional assumptions on X, there exists a
constant K > 0 such that for all ¢ > 0,

Cy—1(u) 1
Ba q

0< P(X(0) < u< X(qw)) < Kg'~*.
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Comments

e Improve a related result for d = 1 Leadbetter et al. (1983)

e Numerically evaluation of C}_,(u): generate, for g small, M i.i.d.
copies of (Z1,2) ~ (X(0),X(ge1)),

* ﬁd M - —
Cd—1(u)*zz]lz{'§ugzé 5671 ey M2,
=1
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Elements of proof: Crofton’s formula (Schneider and Weil (2008))

Define the Affine Grassmanian A(d, 1): the set of lines in RY.

e Parametrization of A(d,1): forw € dB¢ and v € vect(w'), denote

(o)) Mﬁ/wvw( ))
0q-1(M) = /Rd ‘/85" oy 1(9B9) dw dx

where oy is a counting measure of isolated points.
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Elements of proof: Crofton’s formula (Schneider and Weil (2008))

Let LE(u) = Lx(u) N B(0,1):

(¢4
E[Gd1\(j)€(u))]=\Fr()/ /ME[GO(LX(U)HIWVW(X))] dw dx.

. \2 \
Ca—1(u) 6 X crossing
§ X Ba

(] = = = E DA
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Implication: Explicit (asymptotic) bias for the surface area

Theorem (Cotsakis, Di Bernardino, D.)

Let D) := sup{diam(PNT): P € s} and 8. = {SP: P € A’}
for 8 € R*. Suppose thatlims_,, D(07) = 0, then, it holds

E[CP7 D (w)] — 220y ().

6—0 ﬁd

. d:2weget%:i.

T
e We can derive: For all d > 1, square lattice and nice fields

oo(T )(E[C“N’( )]—2’031@)) S0

for N§ — oo, (N§)9/251-¢ — 0, £ € (0,1).
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Implication: CLT results

e Existing CLT: for the unavaible continuoulsly observed CJ’ a—1(u).
— Cannot use them for 5&?&@”@).

e Square lattice: Adapt a CLT result for mixing random fields of
Iribarren (1989) and (*) for the observed pixelized cf,i;ﬂ ().
Constraints: (N§)9/281-¢ — 0, & € (0,1), and X is strongly

alpha mixing such that for some 11 > 0

oo

Z r3d—1a(r)ﬁ < oo,

r=1
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To conclude

Estimating the surface area from a point cloud based on polytopic
tesselations generates a bias, that depends only on the dimension :
(almost) not on the nature of the field nor on the pixelization
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To conclude

Estimating the surface area from a point cloud based on polytopic
tesselations generates a bias, that depends only on the dimension :
(almost) not on the nature of the field nor on the pixelization

Merci!
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Lipschitz-Killing curvatures for excursion sets

Question: How to properly define these quantities for TN Ex(u)?

Tool: Curvature measures for Positive Reach sets (Federer 59)

Intuitively: “A is a positive reach set if one can roll a ball of positive
radius along the exterior boundary of A keeping in touch with A.”




Curvature measures

Let A be a Positive Reach set, define for any Borel set U C R?

TC(9A dANU
(A, U)= TELAU) c1>1(A,u):‘2|1 and ®y(A,U) = |AN U,

Euler characteristic 2 % Perimeter Area

o TC(dA,U) is the integral over U of the curvature along the
positively oriented curve dA

e |.|1 the one-dimensional Hausdorff measure

e |.| the two-dimensional Lebesgue measure.

Remarks:
e The measures ®;(A, -) are additive: Union of Positive Reach

e We take A= TN Ex(u), which is in the UPR class a.s. if, e.g.

e Xisofclass C? a.s.
o Ex(u) is locally given by a finite union of disks.



Lipschitz-Killing curvatures for excursion sets

4
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Student random field; Ex(u) < UPR a.s.
Shot noise field, B=1 a.s. Ex(u) ¢ PR a.s. but Ex(u) < UPR a.s.

X Shot noise field, B+1 a.s. Ex(u) ¢ PR a.s. and Ex(u) ¢ UPR a.s. Biermé
and Desolneux (2017)



Lipschitz-Killing curvatures for excursion sets

How can we compute Cg 4 »(X, u) ?

e Gaussian type fields: X = F(G) where V(G/(0)) = Ak, A >0,

P (G(0) € Tube(F,p)) = C5(X, u)+p\2/éCT(X, u)+p2%C§(X,u)+O(p3).

e.g. for a Student field:

F:(x,y) ERxRF i

X
lvll/ vk’

Iyl =
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