Geometry of excursion sets: computing the surface area from discretized points

Céline Duval

j.w. H. Biermé, R. Cotsakis, E. Di Bernardino and A. Estrade

Laboratoire
Paul Painlevé

What is the question?

- Let $X: \mathbb{R}^{d} \mapsto \mathbb{R}$ be a stationary isotropic random field

For example $(d=2)$:

Figure: Gaussian field with covariance function $e^{-\kappa^{2}\|x\|^{2}}, \kappa=100 / 2^{10}$ (left), Chi square field with 2 degree of freedom (right).

What is the question?

- $X: \mathbb{R}^{d} \mapsto \mathbb{R}$ is a stationary isotropic random field
- X is observed on a window $T \subset \mathbb{R}^{d}$ trough its excursion sets

Figure: Gaussian field with covariance function $e^{-\kappa^{2}\|x\|^{2}}, \kappa=100 / 2^{10}$ (left) and two excursion sets for $u=0$ (center) and $u=1$ (right).

What is the question?

- $X: \mathbb{R}^{d} \mapsto \mathbb{R}$ is a stationary isotropic random field
- X is observed on a window T trough its excursion sets at level $u \in \mathbb{R}$

$$
E_{X}(u):=X^{-1}([u, \infty))=\left\{t \in \mathbb{R}^{d}, X(t) \geq u\right\}
$$

we observe: $T \cap E_{X}\left(u_{0}\right)$ for a fixed level u_{0} : sparse information.

Problems

(1) Inference problem: is it possible to recover parameters of X ?
(2) Testing: Is X Gaussian or not?

Tool: Geometry of the excursion sets $T \cap E_{X}(u)$

A not so trivial question...

Normalized Gaussian field with covariance function $e^{-\kappa^{2}\|x\|^{2}}$ (left) and two excursion sets for $u=0$ (center) and $u=1$ (right).

Normalized Student field with 4 degrees of freedom (left) and two excursion sets for $u=0$ (center) and $u=1$ (right).

Contents

(1) Lipschitz-Killing curvatures for excursion sets
(2) Pixelisation: Computing the surface area from discrete points

Lipschitz-Killing curvatures in dimension 2

If $d=2$, for a "nice" set A one can define 3 LK curvatures:
$\chi(A)$: Euler characteristic $(d=2)$: (\sharp (connected component) $-\sharp($ holes $))$ of A, related to the connectivity,
$\sigma_{1}(A)$: Surface area (perimeter $d=2$) of A, related to the regularity, $\sigma_{2}(A)$: Area of A, related to the occupation density.

Applications: Cosmology, 2D x-ray images (detection of osteoporosis, mammograms),...

Lipschitz-Killing curvatures

In dimension $d \geq 2$, there exist $d+1$ - LK curvatures:
$\sigma_{d}(A)$: Area of A : the Lebesgue measure of A,
$\sigma_{d-1}(A)$: Surface area of $A, d-1$-dimensional Hausdorff measure of ∂A.
For $0 \leq k \leq d$ the k-dimensional Hausdorff measure of $B \subset \mathbb{R}^{d}$ is

$$
\sigma_{k}(B):=\frac{\pi^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}+1\right)} \lim _{\delta \rightarrow 0} \underset{\substack{\inf \\ \bigcup_{i=1}^{\infty}\left(U_{i}\right)<\delta \\ \bigcup_{i} \supseteq B}}{ } \quad \sum_{i \in \mathbb{N}}\left(\frac{\operatorname{diam}\left(U_{i}\right)}{2}\right)^{k},
$$

where the infimum is taken over all countable covers of B by arbitrary subsets U_{i} of \mathbb{R}^{d}.

Lipschitz-Killing curvatures for excursion sets

Let X be stationary, isotropic and a.s. twice differentiable such that the probability density of $(X(0), \nabla X(0))$ is bounded uniformly on \mathbb{R}^{d+1}.

Let $u \in \mathbb{R}, T \subset \mathbb{R}^{d}$, define the excursion set within T above level u :

$$
E_{X}^{T}(u):=\{t \in T: X(t) \geq u\}=T \cap E_{X}(u), \quad E_{X}(u):=X^{-1}([u,+\infty))
$$

and the level curves within T

$$
L_{X}^{T}(u):=\{t \in T: X(t)=u\}=T \cap \partial E_{X}(u), \text { a.s. }
$$

Lipschitz-Killing curvatures for excursion sets

- Empirically accessible quantities:

$$
\begin{aligned}
C_{d}^{T}(u) & :=\frac{1}{\sigma_{d}(T)} \sigma_{d}\left(E_{X}^{T}(u)\right)=\frac{1}{\sigma_{d}(T)} \int_{T} \mathbb{1}_{\{X(t) \geq u\}} \mathrm{d} t \\
C_{d-1}^{T}(u) & :=\frac{1}{\sigma_{d}(T)} \sigma_{d-1}\left(L_{X}^{T}(u)\right)=\frac{1}{\sigma_{d}(T)} \int_{L_{X}^{T}(u)} \sigma_{d-1}(\mathrm{~d} s) .
\end{aligned}
$$

Matlab functions: bwarea, bwperim (pixelization error)

- LK densities: involve parameters of the field

$$
C_{k}^{*}(u):=\mathbb{E}\left[C_{k}^{T}(u)\right], \text { for } k=d, d-1, \forall T
$$

Computing $C_{k}^{*}(u)$?o七 ?
Area $\checkmark: C_{d}^{*}(u)=\mathbb{E}\left[C_{d}^{\top}(u)\right]=\mathbb{P}(X(0) \geq u)$.
Others? : Tube formula, characteristic function...

Statistical strategy

(1) Observations: $T \cap E_{X}(u)$ for T a large hypercube in \mathbb{R}^{d},
(2) Compute: $C_{k}^{T}(u), k=d-1, d$
(3) Relate them to the parameters of the field: estimation / testing procedures

Example: For $d=2, X$ a Gaussian random field X centered with unit variance and second spectral moment $\lambda>0$

$$
\frac{1}{2} \text { perimeter: } \frac{1}{4} \lambda^{1 / 2} e^{-u^{2} / 2} \quad \text { area: } \int_{u}^{\infty} \frac{e^{-v^{2} / 2}}{\sqrt{2 \pi}} d v
$$

Estimated $C_{d, d-1}^{\top}(u)$ and Theoretical $C_{d, d-1}^{*}(u)$.

Statistical strategy: technical limitations

(1) Difficult to establish "general CLT results" for $C_{k}^{T}(u)$, as $T \nearrow \mathbb{R}^{d}$,

- Known in particular cases (Gaussian, chi-square for $d=1$),
- Asymptotic variances not (always) explicit.

Statistical strategy: technical limitations

(1) Difficult to establish "general CLT results" for $C_{k}^{T}(u)$, as $T \nearrow \mathbb{R}^{d}$,
(2) Unreasonable assumption X centered with unit variance

- The mean/variance provide information on the LK curvatures
- From the excursion set: impossible to estimate mean/variance (X)
- Image comparison: fields with distant mean/variances?

Figure: Two excursion sets for $u=0$ of the same realization of a Gaussian field (left: initial field, right: shifted field).

Statistical strategy: technical limitations

(1) Difficult to establish "general CLT results" for $C_{k}^{T}(u)$, as $T \nearrow \mathbb{R}^{d}$,
(2) Unreasonable assumption X centered with unit variance Notion of effective level in the Gaussian case

Figure: Synthetic digital mammograms. Excursion sets for a fixed level $u=2200$ (first row) and for the three adaptive levels \widetilde{u}, such that the effective levels coincide (second row).

Statistical strategy: technical limitations

(1) Difficult to establish "general CLT results" for $C_{k}^{T}(u)$, as $T \nearrow \mathbb{R}^{d}$,
(2) Unreasonable assumption X centered with unit variance
(3) Pixelisation: Area \checkmark, Surface area X

$$
\frac{1}{2} \text { perimeter: } \frac{1}{4} \lambda^{1 / 2} e^{-u^{2} / 2}
$$

Estimated $C_{d, d-1}^{T}(u)$ and Theoretical $C_{d, d-1}^{*}(u)$.

Contents

(1) Lipschitz-Killing curvatures for excursion sets
(2) Pixelisation: Computing the surface area from discrete points

Polytopic tessellations based on point clouds

(a) Hexagones and truncated triangles lattice

(b) Square lattice

(c) Voronoi tessellation

Figure: Three examples of tilings with a particular choice of reference points.

Let \mathscr{H} be a set of convex, closed polytopes that tessellates \mathbb{R}^{d}, let $\dot{\mathscr{C}}^{\top}=\left\{\left(P, P^{\bullet}\right): P \in \mathscr{H}, P \subset T\right\}$ be a point-referenced honeycomb.

- $\sigma_{d}\left(P_{1} \cap P_{2}\right)=0$, for any $P_{1} \neq P_{2} \in \mathscr{H}$ and for P_{1}, P_{2} adjacent, then $\sigma_{d-1}\left(P_{1} \cap P_{2}\right)>0$.

Estimated area and surface area on point clouds

Define

$$
\widehat{\mathcal{C}}_{d}^{(\dot{\mathscr{H}}, T)}(u):=\frac{1}{\sigma_{d}(T)} \sum_{P \in \mathscr{H}^{T}} \sigma_{d}(P) \mathbb{1}_{X(P \bullet) \geq u}
$$

and

$$
\widehat{C}_{d-1}^{(\dot{\mathscr{H}}, T)}(u):=\frac{1}{\sigma_{d}(T)} \sum_{P_{1}, P_{2} \in \mathscr{H}^{T}} \sigma_{d-1}\left(P_{1} \cap P_{2}\right) \mathbb{1}_{X\left(P_{1}^{*}\right) \leq u<X\left(P_{2}^{0}\right)} .
$$

Estimated area and surface area on point clouds

- (Almost) unibiased area

$$
\mathbb{E}\left[\widehat{C}_{d}^{(\dot{\mathscr{H}}, T)}(u)\right]=\frac{\sigma_{d}\left(\bigcup_{P \in \mathscr{H}^{T}} P\right)}{\sigma_{d}(T)} C_{d}^{*}(u) .
$$

- For the surface area? It has been reported (Miller (1999), Biermé and Desolneux (2021)) for $d=2$, specific tilings and particular fields

$$
\mathbb{E}\left[\widehat{\mathcal{C}}_{d-1}^{\left(\dot{\mathscr{H}}_{\delta}, T\right)}(u)\right] \underset{\delta \rightarrow 0}{\nrightarrow} C_{d-1}^{*}(u) .
$$

A result on crossings: $\mathbb{P}\left(X\left(P_{1}^{\bullet}\right) \leq u<X\left(P_{2}^{\bullet}\right)\right)$

Theorem (Cotsakis, Di Bernardino, D.)
Fix $\mathbf{w} \in \partial B_{1}^{d}$ and $u \in \mathbb{R}$,

$$
\begin{gathered}
\lim _{q \rightarrow 0} \frac{1}{q} \mathbb{P}(X(0) \leq u<X(q \mathbf{w}))=\frac{C_{d-1}^{*}(u)}{\beta_{d}}, \\
\text { where } \quad \beta_{d}=\frac{2 \sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} .
\end{gathered}
$$

Fix $\varepsilon \in(0,1)$, under additional assumptions on X, there exists a constant $K>0$ such that for all $q>0$,

$$
0 \leq \frac{C_{d-1}^{*}(u)}{\beta_{d}}-\frac{1}{q} \mathbb{P}(X(\mathbf{0}) \leq u<X(q \mathbf{w})) \leq K q^{1-\varepsilon}
$$

Comments

- Improve a related result for $d=1$ Leadbetter et al. (1983)
- Numerically evaluation of $C_{d-1}^{*}(u)$: generate, for q small, M i.i.d. copies of $\left(Z_{1}, Z_{2}\right) \sim\left(X(\mathbf{0}), X\left(q \mathbf{e}_{1}\right)\right)$,

$$
\left|C_{d-1}^{*}(u)-\frac{\beta_{d}}{q} \sum_{j=1}^{M} \mathbb{1}_{z_{1}^{j} \leq u \leq z_{2}^{j}}\right| \lesssim q^{1-\varepsilon} \vee M^{-1 / 2} .
$$

Elements of proof: Crofton's formula (Schneider and Weil (2008))

Define the Affine Grassmanian $A(d, 1)$: the set of lines in \mathbb{R}^{d}.

- Parametrization of $A(d, 1)$: for $\mathbf{w} \in \partial B_{1}^{d}$ and $\mathbf{v} \in \operatorname{vect}\left(\mathbf{w}^{\perp}\right)$, denote

$$
l_{\mathbf{w}, \mathbf{v}}:=\{\mathbf{v}+\lambda \mathbf{w}: \lambda \in \mathbb{R}\} .
$$

$$
\sigma_{d-1}(M)=\frac{\sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \int_{\mathbb{R}^{d-1}} \int_{\partial B_{1}^{d}} \frac{\sigma_{0}\left(M \cap I_{\mathbf{w}, \mathbf{v}_{\mathbf{w}}(\mathbf{x})}\right)}{\sigma_{d-1}\left(\partial B_{1}^{d}\right)} \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{x}
$$

where σ_{0} is a counting measure of isolated points.

Elements of proof: Crofton's formula (Schneider and Weil (2008))

Let $L_{X}^{B}(u)=L_{X}(u) \cap B(0,1)$:

$$
\begin{array}{cc}
\mathbb{E}\left[\sigma_{d-1}\left(L_{X}^{B}(u)\right)\right]=\frac{\sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \int_{\mathbb{R}^{d-1} \partial B_{1}^{d}} \int_{\searrow} \frac{1}{\sigma_{d-1}\left(\partial B_{1}^{d}\right)} \mathbb{E}\left[\sigma_{0}\left(L_{X}^{B}(u) \cap I_{\mathbf{w}, \mathbf{v}_{\mathbf{w}}(\mathbf{x})}\right)\right] \mathrm{d} \mathbf{w} \mathrm{~d} \mathbf{x} . \\
C_{d-1}^{*}(u) & \searrow \\
\frac{1}{2} \times \beta_{d} & \frac{2}{q} \times \operatorname{crossing}
\end{array}
$$

Implication: Explicit (asymptotic) bias for the surface area

Theorem (Cotsakis, Di Bernardino, D.)
Let $D^{(\mathscr{H})}:=\sup \{\operatorname{diam}(P \cap T): P \in \mathscr{H}\}$ and $\delta \mathscr{H}:=\{\delta P: P \in \mathscr{H}\}$ for $\delta \in \mathbb{R}^{+}$. Suppose that $\lim _{\delta \rightarrow 0} D^{(\delta \mathscr{H})}=0$, then, it holds

$$
\mathbb{E}\left[\widehat{C}_{d-1}^{(\delta \dot{\mathscr{H}}, T)}(u)\right] \underset{\delta \rightarrow 0}{\longrightarrow} \frac{2 d}{\beta_{d}} C_{d-1}^{*}(u)
$$

- $d=2$ we get $\frac{2 d}{\beta_{d}}=\frac{4}{\pi}$.
- We can derive: For all $d \geq 1$, square lattice and nice fields

$$
\sqrt{\sigma_{d}\left(T_{N}\right)}\left(\mathbb{E}\left[\widehat{C}_{d-1}^{\left(\delta, T_{N}\right)}(u)\right]-\frac{2 d}{\beta_{d}} C_{d-1}^{*}(u)\right) \rightarrow 0
$$

for $N \delta \rightarrow \infty,(N \delta)^{d / 2} \delta^{1-\varepsilon} \rightarrow 0, \varepsilon \in(0,1)$.

Implication: CLT results

- Existing CLT: for the unavaible continuoulsly observed $C_{d, d-1}^{T}(u)$. \rightarrow Cannot use them for $\widehat{C}_{d, d-1}^{(\delta \dot{\mathscr{C}}, T)}(u)$.
- Square lattice: Adapt a CLT result for mixing random fields of Iribarren (1989) and (\star) for the observed pixelized $\widehat{C}_{d, d-1}^{(\delta, T)}(u)$. Constraints: $(N \delta)^{d / 2} \delta^{1-\varepsilon} \rightarrow 0, \varepsilon \in(0,1)$, and X is strongly alpha mixing such that for some $\eta>0$

$$
\sum_{r=1}^{+\infty} r^{3 d-1} \alpha(r)^{\frac{\eta}{2+\eta}}<+\infty
$$

To conclude

Estimating the surface area from a point cloud based on polytopic tesselations generates a bias, that depends only on the dimension :
(almost) not on the nature of the field nor on the pixelization

To conclude

Estimating the surface area from a point cloud based on polytopic tesselations generates a bias, that depends only on the dimension : (almost) not on the nature of the field nor on the pixelization

Merci!

Non-exhaustive list of references

\hookrightarrow Adler, Taylor. Random fields and geometry. Springer, New York, 2007.
\hookrightarrow Biermé and Desolneux. The effect of discretization on the mean geometry of a 2D random field. Annales Henri Lebesgue, 4:1295-1345, (2021).

- Biermé, Di Bernardino, Duval, Estrade. Lipschitz-Killing curvatures of excursion sets for two dimensional random fields, EJS, 13, 536-581, (2019).
\hookrightarrow Bulinski, Spodarev, and Timmermann. Central limit theorems for the excursion set volumes of weakly dependent random fields. Bernoulli, 18(1):100-118, (2012).
- Cotsakis, Di Bernardino, Duval. Surface area and volume of excursion sets observed on point cloud based polytopic tessellations, Preprint ArXiv.
- Di Bernardino, Duval. Statistics for Gaussian Random Fields with Unknown Location and Scale using Lipschitz-Killing Curvatures, Scand. Journal of Stat. 49, 143-184, (2022).
\hookrightarrow Iribarren. Asymptotic behaviour of the integral of a function on the level set of a mixing random field. Probability and Mathematical Statistics, 10(1):45-56, (1989).
\hookrightarrow Leadbetter, Lindgren, and Rootzén. Extremes and related properties of random sequences and processes. Springer Series in Statistics. Springer, Germany, (1983).
\hookrightarrow Miller. Alternative Tilings for Improved Surface Area Estimates by Local Counting Algorithms. Computer Vision and Image Understanding, 74(3):193-211 (1999).
\hookrightarrow Schneider and Weil. Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin, (2008).

Lipschitz-Killing curvatures for excursion sets

Question: How to properly define these quantities for $T \cap E_{X}(u)$?
Tool: Curvature measures for Positive Reach sets (Federer 59)

Intuitively: "A is a positive reach set if one can roll a ball of positive radius along the exterior boundary of A keeping in touch with A."

Curvature measures

Let A be a Positive Reach set, define for any Borel set $U \subset \mathbb{R}^{2}$ $\underset{\text { Euler characteristic }}{\Phi_{0}(A, U)=\frac{\mathrm{TC}(\partial A, U)}{2 \pi},} \underset{\substack{\frac{1}{2} \text { Perimeter }}}{\Phi_{1}(A, U)=\frac{|\partial A \cap U|_{1}}{2} \text { and } \underset{\text { Area }}{\Phi_{2}(A, U)}=|A \cap U|, ~}$

- $\operatorname{TC}(\partial A, U)$ is the integral over U of the curvature along the positively oriented curve ∂A
- |.| $\left.\right|_{1}$ the one-dimensional Hausdorff measure
- |.| the two-dimensional Lebesgue measure.

Remarks:

- The measures $\Phi_{i}(A, \cdot)$ are additive: Union of Positive Reach
- We take $A=T \cap E_{X}(u)$, which is in the UPR class a.s. if, e.g.
- X is of class C^{2} a.s.
- $E_{X}(u)$ is locally given by a finite union of disks.

Lipschitz-Killing curvatures for excursion sets

\checkmark Student random field; $E_{X}(u) \in$ UPR a.s.
\checkmark Shot noise field, $B=1$ a.s. $E_{X}(u) \notin \mathrm{PR}$ a.s. but $E_{X}(u) \in$ UPR a.s.
X Shot noise field, $B \pm 1$ a.s. $E_{X}(u) \notin \mathrm{PR}$ a.s. and $E_{X}(u) \notin$ UPR a.s. Biermé and Desolneux (2017)

Lipschitz-Killing curvatures for excursion sets bace

How can we compute $C_{0,1,2}^{*}(X, u)$?

- Gaussian type fields: $X=F(\mathbf{G})$ where $\mathbb{V}\left(G_{i}^{\prime}(0)\right)=\lambda I_{2}, \lambda>0$,
$\mathbb{P}(\mathbf{G}(0) \in \operatorname{Tube}(F, \rho))=C_{2}^{*}(X, u)+\rho \frac{2 \sqrt{2}}{\sqrt{\lambda \pi}} C_{1}^{*}(X, u)+\rho^{2} \frac{\pi}{\lambda} C_{0}^{*}(X, u)+O\left(\rho^{3}\right)$.
e.g. for a Student field:
$F:(x, y) \in \mathbb{R} \times \mathbb{R}^{k} \mapsto \frac{x}{\|y\| / \sqrt{k}}$,

