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Framework and general picture

Measure Sample Xn = {X1, . . . , Xn}, Xi’s i.i.d. ∼ X ∈M(RD).

Examples :

M(RD) is the space of measures on RD (not of constant total mass).

Objective :

Clusterize the set of measures Xn.

• Samples of persistence diagrams (D = 2).

• Sample of realizations of a point processes in RD.

Input :
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TDA motivation

Objective :

Clusterize the set of persistence diagrams.

Input : Samples of persistence diagrams (discrete measures in R2), e.g.
computed from point clouds sampled on submanifolds of RN .

Pick a manifold
“at random” and
sample points on it

Observed data : a topologi-
cal descriptor, the persistence
diagram of the sample
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Point cloud

Persistent diagrams for distance functions

1. Grow a family of balls centered on
the data (set) of interest.

2. Track the evolution of the topology
(homology) of the union of balls
(sublevel sets of the distance func-
tion).

3. Persistence barcodes/diagrams : en-
code the topological information.
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Representations of
persistence

Machine
Learning / AI

• Persistence diagrams are not well-suited for classi-
cal ML algorithms (the space of PD is highly non
linear).
→ Need of linear representations of persistence

• Not always clear which part of the diagrams carries
the relevant information.
→ How to (automatically) build relevant represen-
tations ?

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

The problem of representation of persistence in ML



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

• The space of measures is much nicer that the space of P. D. !
• In the general algebraic persistence theory, persistence diagrams naturally

appears as discrete measures in the plane.

• Many persistence representations can be expressed as

D(f) =
∑
p∈D

f(p) =

∫
fdD

for well-chosen functions f : R2 → H.

Motivations :

[C., de Silva, Glisse, Oudot 16]



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

Benefits :
• Interesting statistical properties
• Data-driven selection of well-adapted representations from distributions of

diagrams (mainly supervised, coming with guarantees : a whole zoo of me-
thods)

• Optimisation of persistence-based functions

Objective of the talk : the non supervised case

Simple and efficient clustering of distributions of measures (in particular persistence
diagrams) and unsupervised learning of linear representations with guarantees.
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Framework and general picture

Measure Sample Xn = {X1, . . . , Xn}, Xi’s i.i.d. ∼ X ∈M(RD).

The direct approach

• endow M(RD) with a metric (e.g. Wasserstein),

• use standard metric clustering algorithms (k-means, hierarchical) :

→ may require Xi(RD) = cte a.s. (Wasserstein metrics),
→ intractable for discrete measures with large number of support

points.



Framework and general picture

Measure Sample Xn = {X1, . . . , Xn}, Xi’s i.i.d. ∼ X ∈M(RD).

The vectorization approach

Xi ∈M(RD) ⇒ vi = v(Xi) ∈ Rk,

perform clustering on vi’s.

• Integral vectorization : v(X) = (X(du)f1(u), . . . , X(du)fk(u))
(Persistence Image, Silhouette, etc.)

• Kernel vectorization :

fj(u) = ψ(‖u− cj‖/σ),

kernel ψ, centers cj , bandwidth σ.

→ Fixed grid : (cj)
′s covering of the ambient space.

→ ”Sample” grid : (cj)’s drawn from the Xi’s.

Not : X(du)f :=
∫
fX(du)



Theoretical setting

Choice of kernel

• Requirements : close to 1 around 0, decreases fast enough, 1-Lipschitz.
• In practice : ΨAT (u) = exp(−u).

Choice of centers

• Mean measure : E(X)(A) = E(X(A)), for a measurable A (intensity function).
• Optimal codebook :

c∗ ∈ arg min
c∈(RD)k

∫
min

j=1,...,k
‖u− cj‖2E(X)(du) = arg min

c∈(RD)k
W 2

2 (E(X), Pc)

Choice of k, σ

• Theory in ”for k large enough there exists σ”.
• Practical calibration of σ = B

4
, B = mini 6=j ‖c∗i − c∗j‖.



Optimal codebook and clustering for persistence diagrams

Mixture of sampled shapes

- S(1), . . . , S(L) compact d`-dimensional submanifolds of RD, hidden labels Zi ∈
[[1, L]], weights π`.
- Distance functions : dS(`) : RD → R+, dS(`)(x) = minyinS(`) ‖x− y‖.

• ”True” thresholded persistence diagrams at scale s (for dS(`)) :

D
(`)
≥s =

∑
{(b,d)∈D(`)|d−b≥s}

n(b, d)δ(b,d) :=

k
(`)
0∑

j=1

n(m
(`)
j )δ

m
(`)
j
.

• For ` ∈ [[1, L]], a YN`
sample uniformly enough on S(`), with N

−1/d`

` .
h ≤ s.

• Component distribution : thresholded persistence diagram from YN`

Xi | {Zi = `} ∼ X(`) ∼ D̂(`)
≥s−h.



Idea 1 (stability of persistence diagrams)

“If h is small enough (enough sample points on every shape), then Xi is

close to the true diagram D
(`)
≥s (w.h.p)”



Idea 2

“If two shapes differ by at least one true diagram point, then those points
can be approximated via quantization provided k is large enough.”

Discriminable shapes

The shapes S(1), . . . , S(`) are discriminable at scale s if for any 1 ≤ `1 < `2 ≤
L there exists m`1,`2 ∈ R2 such that

D
(`1)
≥s ({m`1,`2}) 6= D

(`2)
≥s ({m`1,`2}).



Idea 2

“If two shapes differ by at least one true diagram point, then those points
can be approximated via quantization provided k is large enough.”

Covering property of optimal codebooks
Let M` = D

(`)
≥s(R2), M̄ =

∑L
`=1 π`M`, and πmin = min`≤L π`.

Assume that S(1), . . . , S(L) are discriminable at scale s, and let m1, . . . ,mk0 denote
the discrimination points. Let K0(h) denote

inf{k ≥ 0 | ∃t1, . . . , tk
L⋃

`=1

D
(`)
≥s \ {m1, . . . ,mk0} ⊂

k⋃
s=1

B∞(ts, h)}.

Let k ≥ k0+K0(h), and (c∗1, . . . , c
∗
k) denote an optimal k-points quantizer of E(X).

Then, provided that h is small enough, we have

∀j ∈ [[1, k0]] ∃p ∈ [[1, k]] ‖c∗p −mj‖∞ ≤
5
√
M̄h√
πmin

.



A coarse bound

Recall :

vi = (Xi(du) exp(−‖u− c∗1‖/σ), . . . , Xi(du) exp(−‖u− c∗k‖/σ)).

• Scale parameters : B̃ = mini=1,...,k0,j=1,...,K0,j 6=i ‖mi −mj‖∞ ∧ s,

σ ∈

[
B̃

128M
,
B̃

64M

]
.

• Centers : k ≥ k0 +K0(h).

Proposition : Provided h is small enough, it holds, with high probability,

Zi1 = Zi2 ⇒ ‖vi1 − vi2‖∞ ≤ 1
4 ,

Zi1 6= Zi2 ⇒ ‖vi1 − vi2‖∞ ≥ 1
2 .



Sample optimization of optimal codebooks



k-means like algorithm

Objective : minimize true risk

R(c) =

∫
min

j=1,...,k
‖u− cj‖2E(X)(du).

Lloyd algorithm (point sample case) :

- Initialization at random
- Iteration t :

- ctj ←
X̄n(du)[u1Wj(c

t−1)]

X̄n[Wj(ct−1)]
.

- Stop when stabilized.

Wj(c
t) : Voronoi cell of ctj ,

X̄n empirical distribution 1
n

∑n
i=1 δXi

(sample case).



k-means like algorithm

Straightforward extensions

Batch algorithm (Lloyd’s type)
- Initialization c(0) at random.
- Iteration t :

ctj ←
X̄n(du)[u1Wj(ct−1)]

X̄n[Wj(ct−1)]
, X̄n =

1

n

n∑
i=1

Xi.

- Stop when stabilized.

Mini-batch algorithm (McQueen’s type) Split [[1, n]] into T equally sized
mini-batches B1, . . . , BT .

- Initialization c(0) at random.
- For t = 1, . . . , T :

c
(t)
j ←

(
1− 1

t

)
c
(t−1)
j +

1

t

X̄Bt(du)[u1Wj(ct−1)]

X̄Bt [Wj(ct−1)]



Margin condition on E(X)

For X ∈M(Λ,M) a.s. ( Supp(X) ⊂ B(0,Λ) and X(RD) ≤M).

• B = infc∗∈Copt mini6=j ‖c∗i − c∗j‖(> 0).
• pmin = infc∗∈Copt mini E(X)(Wi(c

∗))(> 0).
• For c∗ ∈ Copt, N(c∗) =

⋃
i 6=j W̄j(c

∗)∩W̄i(c
∗) (skeleton of the Voronoi

Diagram).
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For X ∈M(Λ,M) a.s. ( Supp(X) ⊂ B(0,Λ) and X(RD) ≤M).

• B = infc∗∈Copt mini6=j ‖c∗i − c∗j‖(> 0).
• pmin = infc∗∈Copt mini E(X)(Wi(c

∗))(> 0).
• For c∗ ∈ Copt, N(c∗) =

⋃
i 6=j W̄j(c

∗)∩W̄i(c
∗) (skeleton of the Voronoi

Diagram).

Margin condition with radius r0 :

E(X) ∈M(Λ,M) satisfies a margin condition with radius r0 > 0 if and only
if, for all 0 ≤ t ≤ r0,

sup
c∗∈Copt

E(X) (B(N(c∗), t)) ≤ Bpmin

128Λ2
t,



Convergence results

If X ∈M(Λ,M) a. s. and E(X) satisfies a margin condition.

Batch algorithm.
If |Supp(X)| ≤ Nmax a.s. and c(0) ∈ B(Copt,Λ0), for T ≥ 2 log(n) and n
large enough, with high probability (1− e−C0n − e−x),

R(c(T ))−R∗ ≤ CM
3Λ2k2D log(k)

np2
min

(1 + x).

Mini-batch algorithm

If c(0) ∈ B(Copt,Λ0) and n/T = ckM2 log(n)/p2
min (size of batches), then

E
(
R(c(T ))−R∗

)
≤ C k

2M4Λ2 log(n)

np3
min

.

→ minimax rates (in n).



Experiments



The ATOL procedure

https://gudhi.inria.fr/python/latest/representations.html

X1, . . . , Xn a measure sample. User choice of k.

- Quantization step : build ĉ = (ĉ1, . . . , ĉk) via mini-batch Algorithm

- Vectorization step : convert Xi into vi via

vi = (Xi(du)(exp(−‖u− ĉ1‖/σ)), . . . , Xi(du)(exp(−‖u− ĉk‖/σ))),

where σ = B̂/2.

Then use your favorite clustering/learning algorithm.



A high dimensional example : sentiment learning on texts

- Large Movie Review Dataset : 50000 reviews (texts), with labels (posi-
tive or negative)

- Review = bag of words
- Word w embedded into R100 via word2vec (module gensim)



A high dimensional example : sentiment learning on texts

- Large Movie Review Dataset : 50000 reviews (texts), with labels (posi-
tive or negative)

- Review = bag of words
- Word w embedded into R100 via word2vec (module gensim)

10-fold cross-validation, accuracies and computations times :

• ATOL with k = 20 + 32 units dense one layer NN : 85.6 ± 0.95,
average times 5.5 + 208.3 + 351.2 s.

• Recurrent NN (LSTM) with 64 units : 89.3±0.44, average time about
1 hour

• kaggle winner 99.9, time 10379.3 s.



Large scale graph classification

G(V,E) graph with set V of vertices and set E of edges, t a diffusion time.

• Heat Kernel Signature at time t : HKSt set values on V .

• Filtration of G w.r.t. HKSt : 4 types of topological features with life
times via extended persistence.

G(V,E)
heat kernel−−−−−−→
signatures

HKSt(G) ∈ R|V |,

G(V,E)
extended−−−−−−→

persistence
PD(HKSt(G), G) ∈ (M(R2))4.



Large scale graph classification

G(V,E)
heat kernel−−−−−−→
signatures

HKSt(G) ∈ R|V |,

G(V,E)
extended−−−−−−→

persistence
PD(HKSt(G), G) ∈ (M(R2))4.

Vectorization : For two diffusion times t1 and t2, ATOL on each M(R2)
coordinate, with k = 10 : → embedding in R(10×4×2).
Classification : Random Forest (100 trees).

method SF NetLSD FGSD GeoScat Atol
reddit threads (203K) 81.4±.2 82.7±.1 82.5±.2 80.0±.1 80.7±.1
twitch egos (127K) 67.8±.3 63.1±.2 70.5±.3 69.7±.1 69.7±.1
github stargazers (12.7K) 55.8±.1 63.2±.1 65.6±.1 54.6±.3 72.3±.4
deezer ego nets (9.6K) 50.1±.1 52.2±.1 52.6±.1 52.2±.3 51.0±.6

Mean ROC-AUC and standard deviations (100 repetitions of 0.8/0.2 train/test).



Large scale graph classification

Alternative approach

G(V,E)
heat kernel−−−−−−→
signatures

HKSt1,t2,t3,t4(G) ∈ R4|V | ≈M(R4).

Vectorization : ATOL with k = 80 (embedding in R80).
Classification : Random Forest (100 trees).

method RetGK FGSD WKPI GNTK PersLay Atol (PD) Atol (Direct)
REDDIT (5K, 5 classes) 56.1±.5 47.8 59.5±.6 — 55.6±.3 67.1±.3 66.1±.2
REDDIT (12K, 11 classes) 48.7±.2 — 48.5±.5 — 47.7±.2 51.4±.2 50.7±.3
COLLAB (5K, 3 classes) 81.0±.3 80.0 — 83.6±.1 76.4±.4 88.3±.2 88.5±.1
IMDB-B (1K, 2 classes) 71.9±1. 73.6 75.1±1.1 76.9±3.6 71.2±.7 74.8±.3 73.9±.5
IMDB-M (1.5K, 3 classes) 47.7±.3 52.4 48.4±.5 52.8±4.6 48.8±.6 47.8±.7 47.0±.5

Mean accuracies and standard deviations.



Recap

A coarse and unsupervised measure vectorization scheme
• but fast,
• yields not that bad results in further clustering and classification tasks,
• comes with a few theoretical insights.



Recap

A coarse and unsupervised measure vectorization scheme
• but fast,
• yields not that bad results in further clustering and classification tasks,
• comes with a few theoretical insights.

Thanks for your attention
References :
[1] M. Royer, F.Chazal, C.Levrard, Y. Umeda, Y. Ike. ATOL : Measure Vectorization
for Automatic Topologically-Oriented Learning. AISTAT 2021

[2] F. Chazal, C. Levrard and M. Royer. Clustering of measures via mean measure
quantization. Electronic Journal of Statistics 2021.

Perspectives (on-going work) :
• (time-)dependent data.
• supervised learning.









A small recap

Vectorization : v(Xi) = (Xi(du)(ψ(‖u− c∗1‖/σ)), . . . , Xi(du)(ψ(‖u− c∗k‖/σ))).

Quantization : c∗ ∈ arg minc∈(RD)k E(X)(du) minj=1,...,k ‖u− cj‖2.

Relevant when
- distributions from two different clusters differ on an area of size r

(choose σ . r).
- c∗ has codepoints on these areas.
→ (Theoretical worst case) k & r−d, d ”dimension” of the support of

E(X).
→ Worst-case guarantees are the same as for deterministic grid (for

d = D).

Major advantage : fast approximation of c∗ from sample.



A small recap 2

Sample approximation of c∗ with fast algorithms and optimal rates, but :

• stringent dependency on the initialization (volume arguments for
repeated initializations deprecates for large D’s),

• margin condition far too demanding (uniform distributions do not sa-
tisfy it for instance).

Not that useful theoretical results for the moment...
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• discrete measures : (interesting statistical properties [Chazal, Divol 2018])

• polynomial roots or evaluations [Di Fabio Ferri 2015] [Kalǐsnik 2016]

• Collections of 1D functions

• finite metric spaces [Carrière Oudot Ovsjanikov 2015]

→ sliced on lines [Carrière Oudot Cuturi 2017]

→ convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

A zoo of representations of persistence

(non exhaustive list)

→ persistence images [Adams et al 2017]

→ landscapes [Bubenik 2012]

→ Betti curves [Umeda 2017]

• etc...
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