Stochastic Geometric Days 2023 Wednesday 14, 2023

Clustering of discrete measures via mean measure quantization with applications to Topological Data Analysis

Frédéric Chazal DataShape team Inria & Laboratoire de Mathématiques d'Orsay Institut DATAIA Université Paris-Saclay

Joint work with C. Levrard (Univ. Paris Cité) and M. Royer (Inria DataShape and System X)

Input :

Measure Sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$, X_i 's i.i.d. $\sim X \in \mathcal{M}(\mathbb{R}^D)$. $\mathcal{M}(\mathbb{R}^D)$ is the space of measures on \mathbb{R}^D (not of constant total mass).

Examples :

- Samples of persistence diagrams (D = 2).
- Sample of realizations of a point processes in \mathbb{R}^D .

Objective :

Clusterize the set of measures X_n .

TDA motivation

Input : Samples of persistence diagrams (discrete measures in \mathbb{R}^2), e.g. computed from point clouds sampled on submanifolds of \mathbb{R}^N .

Objective :

Clusterize the set of persistence diagrams.

TDA motivation

Input : Samples of persistence diagrams (discrete measures in \mathbb{R}^2), e.g. computed from point clouds sampled on submanifolds of \mathbb{R}^N .

Objective :

Clusterize the set of persistence diagrams.

TDA motivation

Input : Samples of persistence diagrams (discrete measures in \mathbb{R}^2), e.g. computed from point clouds sampled on submanifolds of \mathbb{R}^N .

Observed data : a topological descriptor, the persistence diagram of the sample

Objective :

Clusterize the set of persistence diagrams.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- Persistence barcode radius Persistence diagram
- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

The problem of representation of persistence in ML

Persistence diagrams as discrete measures

Motivations :

- The space of measures is much nicer that the space of P. D. !
- In the general algebraic persistence theory, persistence diagrams naturally appears as discrete measures in the plane. [C., de Silva, Glisse, Oudot 16]
- Many persistence representations can be expressed as

$$D(f) = \sum_{p \in D} f(p) = \int f dD$$

for well-chosen functions $f : \mathbb{R}^2 \to \mathcal{H}$.

Persistence diagrams as discrete measures

Benefits :

- Interesting statistical properties
- Data-driven selection of well-adapted representations from distributions of diagrams (mainly supervised, coming with guarantees : a whole zoo of methods)
- Optimisation of persistence-based functions

Objective of the talk : the non supervised case

Simple and efficient clustering of distributions of measures (in particular persistence diagrams) and unsupervised learning of linear representations with guarantees.

Measure Sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$, X_i 's i.i.d. $\sim X \in \mathcal{M}(\mathbb{R}^D)$.

 $\mathcal{M}(\mathbb{R}^D)$ is the space of measures on \mathbb{R}^D (not of constant total mass).

Examples :

- Samples of persistence diagrams (D = 2).
- Sample of realizations of a point processes in \mathbb{R}^D .

Objective :

Clusterize the set of measures X_n .

Measure Sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$, X_i 's i.i.d. $\sim X \in \mathcal{M}(\mathbb{R}^D)$.

The direct approach

- endow $\mathcal{M}(\mathbb{R}^D)$ with a metric (e.g. Wasserstein),
- use standard metric clustering algorithms (k-means, hierarchical) :
 - \rightarrow may require $X_i(\mathbb{R}^D) = cte$ a.s. (Wasserstein metrics),
 - \rightarrow intractable for discrete measures with large number of support points.

Measure Sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$, X_i 's i.i.d. $\sim X \in \mathcal{M}(\mathbb{R}^D)$.

The vectorization approach

$$X_i \in \mathcal{M}(R^D) \Rightarrow v_i = v(X_i) \in \mathbb{R}^k,$$

perform clustering on v_i 's.

• Integral vectorization : $v(X) = (X(du)f_1(u), \dots, X(du)f_k(u))$ (Persistence Image, Silhouette, etc.)

Not : $X(du)f := \int fX(du)$

• Kernel vectorization :

$$f_j(u) = \psi(\|u - c_j\|/\sigma),$$

kernel ψ , centers c_i , bandwidth σ .

- \rightarrow Fixed grid : $(c_j)'s$ covering of the ambient space.
- \rightarrow "Sample" grid : (c_j) 's drawn from the X_i 's.

Theoretical setting

Choice of kernel

- **Requirements :** close to 1 around 0, decreases fast enough, 1-Lipschitz.
- In practice : $\Psi_{AT}(u) = \exp(-u)$.

Choice of centers

- Mean measure : $\mathbb{E}(X)(A) = \mathbb{E}(X(A))$, for a measurable A (intensity function).
- Optimal codebook :

$$\mathbf{c}^* \in \arg\min_{\mathbf{c}\in(\mathbb{R}^D)^k} \int \min_{j=1,\dots,k} \|u-c_j\|^2 \mathbb{E}(X)(du) = \arg\min_{\mathbf{c}\in(\mathbb{R}^D)^k} W_2^2(\mathbb{E}(X), P_{\mathbf{c}})$$

Choice of $k\text{, }\sigma$

- Theory in "for k large enough there exists σ ".
- Practical calibration of $\sigma = \frac{B}{4}$, $B = \min_{i \neq j} \|c_i^* c_j^*\|$.

Optimal codebook and clustering for persistence diagrams

Mixture of sampled shapes

- $S^{(1)}, \ldots, S^{(L)}$ compact d_{ℓ} -dimensional submanifolds of \mathbb{R}^D , hidden labels $Z_i \in [\![1, L]\!]$, weights π_{ℓ} .

- Distance functions : $d_{S^{(\ell)}} : \mathbb{R}^D \to \mathbb{R}_+, d_{S^{(\ell)}}(x) = \min_{yinS^{(\ell)}} ||x - y||.$

• "True" thresholded persistence diagrams at scale s (for $\mathrm{d}_{S^{(\ell)}})$:

$$D_{\geq s}^{(\ell)} = \sum_{\{(b,d)\in D^{(\ell)}|d-b\geq s\}} n(b,d)\delta_{(b,d)} := \sum_{j=1}^{k_0^{(\ell)}} n(m_j^{(\ell)})\delta_{m_j^{(\ell)}}.$$

- For $\ell \in [\![1, L]\!]$, a $\mathbb{Y}_{N_{\ell}}$ sample uniformly enough on $S^{(\ell)}$, with $N_{\ell}^{-1/d_{\ell}} \lesssim h \leq s$.
- Component distribution : thresholded persistence diagram from \mathbb{Y}_{N_ℓ}

$$X_i \mid \{Z_i = \ell\} \sim X^{(\ell)} \sim \hat{D}_{\geq s-h}^{(\ell)}.$$

Idea 1 (stability of persistence diagrams)

"If h is small enough (enough sample points on every shape), then X_i is close to the true diagram $D_{>s}^{(\ell)}$ (w.h.p)"

Idea 2

"If two shapes differ by at least one true diagram point, then those points can be approximated via quantization provided k is large enough."

Discriminable shapes

The shapes $S^{(1)}, \ldots, S^{(\ell)}$ are discriminable at scale s if for any $1 \leq \ell_1 < \ell_2 \leq L$ there exists $m_{\ell_1,\ell_2} \in \mathbb{R}^2$ such that

$$D_{\geq s}^{(\ell_1)}(\{m_{\ell_1,\ell_2}\}) \neq D_{\geq s}^{(\ell_2)}(\{m_{\ell_1,\ell_2}\}).$$

Idea 2

"If two shapes differ by at least one true diagram point, then those points can be approximated via quantization provided k is large enough."

Covering property of optimal codebooks

Let $M_{\ell} = D_{\geq s}^{(\ell)}(\mathbb{R}^2)$, $\overline{M} = \sum_{\ell=1}^{L} \pi_{\ell} M_{\ell}$, and $\pi_{min} = \min_{\ell \leq L} \pi_{\ell}$. Assume that $S^{(1)}, \ldots, S^{(L)}$ are discriminable at scale s, and let m_1, \ldots, m_{k_0} denote the discrimination points. Let $K_0(h)$ denote

$$\inf\{k \ge 0 \mid \exists t_1, \dots, t_k \quad \bigcup_{\ell=1}^L D_{\ge s}^{(\ell)} \setminus \{m_1, \dots, m_{k_0}\} \subset \bigcup_{s=1}^k B_{\infty}(t_s, h)\}.$$

Let $k \ge k_0 + K_0(h)$, and (c_1^*, \ldots, c_k^*) denote an optimal k-points quantizer of $\mathbb{E}(X)$. Then, provided that h is small enough, we have

$$\forall j \in [\![1, k_0]\!] \quad \exists p \in [\![1, k]\!] \quad \|c_p^* - m_j\|_{\infty} \le \frac{5\sqrt{M}h}{\sqrt{\pi_{min}}}.$$

A coarse bound

Recall :

$$v_i = (X_i(du) \exp(-\|u - c_1^*\| / \sigma), \dots, X_i(du) \exp(-\|u - c_k^*\| / \sigma)).$$

• Scale parameters : $\tilde{B} = \min_{i=1,\dots,k_0, j=1,\dots,K_0, j\neq i} \|m_i - m_j\|_{\infty} \wedge s$,

$$\sigma \in \left[\frac{\tilde{B}}{128M}, \frac{\tilde{B}}{64M}\right].$$

• Centers : $k \ge k_0 + K_0(h)$.

Proposition : Provided *h* is small enough, it holds, with high probability,

$$\begin{array}{lll} Z_{i_1} = Z_{i_2} & \Rightarrow & \|v_{i_1} - v_{i_2}\|_{\infty} \leq \frac{1}{4}, \\ Z_{i_1} \neq Z_{i_2} & \Rightarrow & \|v_{i_1} - v_{i_2}\|_{\infty} \geq \frac{1}{2}. \end{array}$$

Sample optimization of optimal codebooks

k-means like algorithm

Objective : minimize true risk

 $W_j(\mathbf{c}^t)$: Voronoi cell of c_j^t , \bar{X}_n empirical distribution $\frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ (sample case).

k-means like algorithm

Straightforward extensions

Batch algorithm (Lloyd's type)

- Initialization $\mathbf{c}^{(0)}$ at random.
- Iteration t :

$$c_j^t \leftarrow \frac{\bar{X}_n(du)[u\mathbbm{1}_{W_j(\mathbf{c}^{t-1})}]}{\bar{X}_n[W_j(\mathbf{c}^{t-1})]}, \quad \bar{X}_n = \frac{1}{n}\sum_{i=1}^n X_i.$$

- Stop when stabilized.

Mini-batch algorithm (McQueen's type) Split $[\![1, n]\!]$ into T equally sized mini-batches B_1, \ldots, B_T .

- Initialization $\mathbf{c}^{(0)}$ at random.
- For t = 1, ..., T :

$$c_{j}^{(t)} \leftarrow \left(1 - \frac{1}{t}\right) c_{j}^{(t-1)} + \frac{1}{t} \frac{\bar{X}_{B_{t}}(du) [u \mathbb{1}_{W_{j}(\mathbf{c}^{t-1})}]}{\bar{X}_{B_{t}}[W_{j}(\mathbf{c}^{t-1})]}$$

Margin condition on $\mathbb{E}(X)$

For $X \in \mathcal{M}(\Lambda, M)$ a.s. ($\text{Supp}(X) \subset B(0, \Lambda)$ and $X(\mathbb{R}^D) \leq M$).

- $B = \inf_{\mathbf{c}^* \in \mathcal{C}_{opt}} \min_{i \neq j} \|c_i^* c_j^*\| (> 0).$
- $p_{\min} = \inf_{\mathbf{c}^* \in \mathcal{C}_{opt}} \min_i \mathbb{E}(X)(\underline{W}_i(\mathbf{c}^*))(\geq 0).$
- For $\mathbf{c}^* \in \mathcal{C}_{opt}$, $N(\mathbf{c}^*) = \bigcup_{i \neq j} \overline{W}_j(\mathbf{c}^*) \cap \overline{W}_i(\mathbf{c}^*)$ (skeleton of the Voronoi Diagram).

Margin condition on $\mathbb{E}(X)$

For $X \in \mathcal{M}(\Lambda, M)$ a.s. ($\text{Supp}(X) \subset B(0, \Lambda)$ and $X(\mathbb{R}^D) \leq M$).

- $B = \inf_{\mathbf{c}^* \in \mathcal{C}_{opt}} \min_{i \neq j} \|c_i^* c_j^*\| > 0).$
- $p_{\min} = \inf_{\mathbf{c}^* \in \mathcal{C}_{opt}} \min_i \mathbb{E}(X)(\underline{W}_i(\mathbf{c}^*))(\geq 0).$
- For $\mathbf{c}^* \in \mathcal{C}_{opt}$, $N(\mathbf{c}^*) = \bigcup_{i \neq j} \overline{W}_j(\mathbf{c}^*) \cap \overline{W}_i(\mathbf{c}^*)$ (skeleton of the Voronoi Diagram).

Margin condition with radius r_0 :

 $\mathbb{E}(X) \in \mathcal{M}(\Lambda, M)$ satisfies a margin condition with radius $r_0 > 0$ if and only if, for all $0 \le t \le r_0$,

$$\sup_{\mathbf{c}^* \in \mathcal{C}_{opt}} \mathbb{E}(X) \left(\mathcal{B}(N(\mathbf{c}^*), t) \right) \le \frac{Bp_{min}}{128\Lambda^2} t,$$

Convergence results

If $X \in \mathcal{M}(\Lambda, M)$ a. s. and $\mathbb{E}(X)$ satisfies a margin condition.

Batch algorithm.

If $|\text{Supp}(X)| \leq N_{\max}$ a.s. and $\mathbf{c}^{(0)} \in B(\mathcal{C}_{opt}, \Lambda_0)$, for $T \geq 2\log(n)$ and n large enough, with high probability $(1 - e^{-C_0 n} - e^{-x})$,

$$R(\mathbf{c}^{(T)}) - R^* \le C \frac{M^3 \Lambda^2 k^2 D \log(k)}{n p_{\min}^2} (1+x).$$

Mini-batch algorithm

If $\mathbf{c}^{(0)} \in \mathrm{B}(\mathcal{C}_{opt}, \Lambda_0)$ and $n/T = ckM^2 \log(n)/p_{\min}^2$ (size of batches), then $\mathbb{E}\left(R(\mathbf{c}^{(T)}) - R^*\right) \leq C \frac{k^2 M^4 \Lambda^2 \log(n)}{n p_{\min}^3}.$

 \rightarrow minimax rates (in n).

Experiments

The ATOL procedure

https://gudhi.inria.fr/python/latest/representations.html

 X_1, \ldots, X_n a measure sample. User choice of k.

- Quantization step : build $\hat{\mathbf{c}} = (\hat{c}_1, \dots, \hat{c}_k)$ via mini-batch Algorithm
- Vectorization step : convert X_i into v_i via

$$v_i = (X_i(du)(\exp(-||u - \hat{c}_1||/\sigma)), \dots, X_i(du)(\exp(-||u - \hat{c}_k||/\sigma))),$$

where $\sigma = \hat{B}/2$.

Then use your favorite clustering/learning algorithm.

A high dimensional example : sentiment learning on texts

- Large Movie Review Dataset : 50000 reviews (texts), with labels (positive or negative)
- Review = bag of words
- Word w embedded into \mathbb{R}^{100} via word2vec (module gensim)

A high dimensional example : sentiment learning on texts

- Large Movie Review Dataset : 50000 reviews (texts), with labels (positive or negative)
- Review = bag of words
- Word w embedded into \mathbb{R}^{100} via word2vec (module gensim)

 $10\mathchar`-fold\ cross-validation,\ accuracies\ and\ computations\ times\ :$

- ATOL with k = 20 + 32 units dense one layer NN : 85.6 ± 0.95 , average times 5.5 + 208.3 + 351.2 s.
- Recurrent NN (LSTM) with 64 units : 89.3±0.44, average time about 1 hour
- kaggle winner 99.9, time 10379.3 s.

Large scale graph classification

G(V, E) graph with set V of vertices and set E of edges, t a diffusion time.

- Heat Kernel Signature at time $t : HKS_t$ set values on V.
- Filtration of G w.r.t. HKS_t : 4 types of topological features with life times via extended persistence.

$$G(V, E) \xrightarrow{\text{heat kernel}} \mathsf{HKS}_t(G) \in \mathbb{R}^{|V|},$$

$$G(V, E) \xrightarrow{\text{extended}} \mathsf{PD}(\mathsf{HKS}_t(G), G) \in (\mathcal{M}(\mathbb{R}^2))^4.$$

Large scale graph classification

$$G(V, E) \xrightarrow{\text{heat kernel}} \mathsf{HKS}_t(G) \in \mathbb{R}^{|V|},$$

$$G(V, E) \xrightarrow{\text{extended}} \mathsf{PD}(\mathsf{HKS}_t(G), G) \in (\mathcal{M}(\mathbb{R}^2))^4.$$

Vectorization : For two diffusion times t_1 and t_2 , ATOL on each $\mathcal{M}(\mathbb{R}^2)$ coordinate, with k = 10 : \rightarrow embedding in $\mathbb{R}^{(10 \times 4 \times 2)}$. **Classification** : Random Forest (100 trees).

method		SF	NetLSD	FGSD	GeoScat	Atol
reddit threads	(203K)	81.4±.2	82.7±.1	$82.5\pm.2$	$80.0 \pm .1$	80.7±.1
twitch egos	(127K)	67.8±.3	$63.1 \pm .2$	70.5±.3	$69.7{\pm}.1$	$69.7 \pm .1$
github stargazers	(12.7K)	$55.8 \pm .1$	$63.2{\pm}.1$	$65.6{\pm}.1$	$54.6 \pm .3$	72.3±.4
deezer ego nets	(9.6K)	50.1±.1	$52.2 \pm .1$	52.6±.1	$52.2 \pm .3$	51.0±.6

Mean ROC-AUC and standard deviations (100 repetitions of 0.8/0.2 train/test).

Large scale graph classification

Alternative approach

$$G(V,E) \xrightarrow{\text{heat kernel}} \mathsf{HKS}_{t_1,t_2,t_3,t_4}(G) \in \mathbb{R}^{4|V|} \approx \mathcal{M}(\mathbb{R}^4).$$

Vectorization : ATOL with k = 80 (embedding in \mathbb{R}^{80}). **Classification** : Random Forest (100 trees).

method	RetGK	FGSD	WKPI	GNTK	PersLay	Atol (PD)	ATOL (Direct)
REDDIT (5K, 5 classes)	56.1±.5	47.8	$59.5 {\pm}.6$		55.6±.3	67.1±.3	66.1±.2
REDDIT (12K, 11 classes)	48.7±.2		$48.5 \pm .5$		47.7±.2	51.4±.2	50.7±.3
COLLAB (5K, 3 classes)	81.0±.3	80.0	—	$83.6 {\pm}.1$	$76.4 {\pm}.4$	88.3±.2	88.5±.1
IMDB-B (1K, 2 classes)	71.9±1.	73.6	$75.1{\pm}1.1$	76.9±3.6	$71.2 \pm .7$	74.8±.3	73.9±.5
IMDB-M (1.5K, 3 classes)	47.7±.3	52.4	$48.4 \pm .5$	52.8±4.6	48.8±.6	47.8±.7	47.0±.5

Mean accuracies and standard deviations.

Recap

A coarse and unsupervised measure vectorization scheme

- but fast,
- yields not that bad results in further clustering and classification tasks,
- comes with a few theoretical insights.

Recap

A coarse and unsupervised measure vectorization scheme

- but fast,
- yields not that bad results in further clustering and classification tasks,
- comes with a few theoretical insights.

Perspectives (on-going work) :

- (time-)dependent data.
- supervised learning.

Thanks for your attention

References :

[1] M. Royer, F.Chazal, C.Levrard, Y. Umeda, Y. Ike. ATOL : Measure Vectorization for Automatic Topologically-Oriented Learning. AISTAT 2021

[2] F. Chazal, C. Levrard and M. Royer. Clustering of measures via mean measure quantization. Electronic Journal of Statistics 2021.

A small recap

Vectorization : $v(X_i) = (X_i(du)(\psi(||u - c_1^*||/\sigma)), \dots, X_i(du)(\psi(||u - c_k^*||/\sigma))).$ Quantization : $\mathbf{c}^* \in \arg\min_{\mathbf{c} \in (\mathbb{R}^D)^k} \mathbb{E}(X)(du) \min_{j=1,\dots,k} ||u - c_j||^2.$

Relevant when

- distributions from two different clusters differ on an area of size r (choose $\sigma \lesssim r$).
- \mathbf{c}^* has codepoints on these areas.
 - \rightarrow (Theoretical worst case) $k \gtrsim r^{-d}$, d "dimension" of the support of $\mathbb{E}(X)$.
 - \rightarrow Worst-case guarantees are the same as for deterministic grid (for d=D).

Major advantage : fast approximation of \mathbf{c}^* from sample.

A small recap 2

Sample approximation of \mathbf{c}^* with fast algorithms and optimal rates, but :

- stringent dependency on the initialization (volume arguments for repeated initializations deprecates for large D's),
- margin condition far too demanding (uniform distributions do not satisfy it for instance).

Not that useful theoretical results for the moment...

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

- 1. Grow a family of balls centered on the data (set) of interest.
- Track the evolution of the topology (homology) of the union of balls (sublevel sets of the distance function).
- 3. Persistence barcodes/diagrams : encode the topological information.

A zoo of representations of persistence

(non exhaustive list)

• Collections of 1D functions

 \rightarrow landscapes [Bubenik 2012]

 \rightarrow Betti curves [Umeda 2017]

• discrete measures : (interesting statistical properties [Chazal, Divol 2018])

 \rightarrow persistence images [Adams et al 2017]

 \rightarrow convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

 \rightarrow sliced on lines [Carrière Oudot Cuturi 2017]

- finite metric spaces [Carrière Oudot Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio Ferri 2015] [Kališnik 2016]

• etc...