Stochastic Geometry days — 2023

Morphological modeling of the microstructure of geo-materials Current limitations of the excursion set theory...as I understand it.

Emmanuel Roubin 2023/06/15

Laboratoire 3SR Université Grenoble Alpes (France)

Who am I?

I'm a classical physisist in geo-mechanics.

I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, \dots) and related physical phenomena (thermo-hydro-meca...)

Who am I?

I'm a classical physisist in geo-mechanics.

I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, \dots) and related physical phenomena (thermo-hydro-meca...)

Structures Scale: > m

Who am I?

I'm a classical physisist in geo-mechanics.

I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, \dots) and related physical phenomena (thermo-hydro-meca...)

Structures Scale: > m

Material Scales: mm, µm, nm

Why am I here?

Correlated Random Field

Excursion of Correlated Random Field

1. Motivations

Tomography From images to simulations

2. Excursions as a morphological model Morphological models Excursions of correlated Random Fields

- 3. The Excursion Set Theory Global descriptors Expectations of the measures
- 4. Limitations of the model Percolation and topology Solutions?

Apparatus for *in situ* tension test

Laboratory tomographs

Laboratory tomographs

Laboratory tomographs

Laboratory tomographs

Laboratory tomographs

Laboratory tomographs

Tomography takes a lot of time \Rightarrow We need **morphological models**

Getting an accurate representation of the morphology is of crucial importance!

. Motivations Tomography

From images to simulations

2. Excursions as a morphological model Morphological models Excursions of correlated Random Fields

- 3. The Excursion Set Theory Global descriptors Expectations of the measures
- 4. Limitations of the model Percolation and topology Solutions?

Goals

- Random aspect in terms of shapes and positions
- Discrete aspect
- Control geometrical and topological quantities

Goals

- Random aspect in terms of shapes and positions
- Discrete aspect
- Control geometrical and topological quantities

Hard sphere packing

Goals

- Random aspect in terms of shapes and positions
- Discrete aspect
- Control geometrical and topological quantities

Hard sphere packing

Excursion sets

Stricly stationnary correlated Random Field with:

- Gaussian distribution
- Gaussian covariance function

Stricly stationnary correlated Random Field with:

- Gaussian distribution, or Gaussian related
- Gaussian covariance function

Stricly stationnary correlated Random Field with:

- Gaussian distribution, or Gaussian related
- · Gaussian covariance function or anything that makes MS differentiable RF

An excursion set \mathcal{E}_s is the result of the "threshold" of a realisation of a RF:

 $\mathcal{E}_{\mathsf{s}} = \{ \boldsymbol{x} \in M \mid g(\boldsymbol{x}) \in \mathcal{H}_{\mathsf{s}} \}$

where M is the domain of definition of the RF and \mathcal{H}_s the so called **Hitting Set**.

For example if we set $\mathcal{H}_{s} =] - \infty; \kappa]$ we have $\mathcal{E}_{s}(\kappa) = \{ x \in M \mid g(x) \leq \kappa \}$

Correlated Random Fields =Ě $q:\Omega\times\mathbb{R}^3\mapsto\mathbb{R}$ -Y--<u>}</u>-**Continuous aspect** parametric variability **Excursion** sets $\mathcal{E}_{\mathsf{s}} = \{ \boldsymbol{x} \in M \mid g(\boldsymbol{x}) \in \mathcal{H}_{\mathsf{s}} \}$

Large L_c

Medium L_c

Small L_c

=]=

=1=

Heterogeneity sizes

Observation scale

Heterogeneity sizes

Discrete aspect explicit morphology

1. Motivations

Tomography From images to simulations

2. Excursions as a morphological model Morphological models Excursions of correlated Random Fields

- 3. The Excursion Set Theory Global descriptors Expectations of the measures
- 4. Limitations of the model Percolation and topology Solutions?

It exists several **families of measures** (Minkowski functionals, Lipschitz-Killing curvatures...). In an N-dimensional space, the size of the base is N + 1 where each element can be seen as a n-dimensional measure. Each measure can be classified into two types:

- geometrical measures $(1 \le n \le N)$
- topological measure (n = 0)

It exists several **families of measures** (Minkowski functionals, Lipschitz-Killing curvatures...). In an N-dimensional space, the size of the base is N + 1 where each element can be seen as a n-dimensional measure. Each measure can be classified into two types:

- geometrical measures $(1 \le n \le N)$
- topological measure (n = 0)

In 3D it's equivalent of considering:

n = 3: Volume

n = 2: Surface area

n = 1: Total curvature

n = 0: Euler Characteristic

Average of the measures over the threshold

Threshold κ

Average of the measures over the threshold

Threshold κ

Evolution of the 4 measures?

19

Threshold κ

19

The expectation formula

In the context of excursion sets of correlated Random Fields each measure \mathcal{L}_j is a Random Variable.

They have a distribution that depends on:

- the parameters of the correlated Random Field ($C(\boldsymbol{x}, \boldsymbol{y}), f_X(x), M$)
- the hitting set (κ)

The expectation formula

In the context of excursion sets of correlated Random Fields each measure \mathcal{L}_j is a Random Variable.

They have a distribution that depends on:

- the parameters of the correlated Random Field ($C(\boldsymbol{x}, \boldsymbol{y}), f_X(x), M$)
- the hitting set (κ)

We don't know the distribution but we know its **expected value**:

 $\mathbb{E}(\mathcal{L}_j(\mathcal{E}_{\mathsf{s}})) = f(j, L_c, \mu, \sigma, M, \kappa)$

🗐 R. Adler, Some new random field tools for spatial analysis, 2008

The expectation formula

In the context of excursion sets of correlated Random Fields each measure \mathcal{L}_j is a Random Variable.

They have a distribution that depends on:

- the parameters of the correlated Random Field ($C(\boldsymbol{x}, \boldsymbol{y}), f_X(x), M$)
- the hitting set (κ)

We don't know the distribution but we know its expected value:

$$\mathbb{E}(\mathcal{L}_j(\mathcal{E}_{\mathsf{s}})) = f(j, L_c, \mu, \sigma, M, \kappa)$$

$$=\sum_{i=0}^{N-j} \binom{i+j}{i} \frac{\omega_{i+j}}{\omega_i \omega_j} \left(\frac{\lambda_2}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \,\mathcal{M}_i^{\gamma}(\boldsymbol{\kappa})$$

R. Adler, Some new random field tools for spatial analysis, 2008

1. Motivations

Tomography From images to simulations

2. Excursions as a morphological model Morphological models Excursions of correlated Random Fields

- 3. The Excursion Set Theory Global descriptors Expectations of the measures
- 4. Limitations of the model Percolation and topology Solutions?

Let's simplify our goals

• 3D manifold

- with high volume fractions ($\mathcal{L}_3 > 50\,\%$)
- made of disconnected components (" $\mathcal{L}_0 > 0$ ")

A DISCLAIMER

To be taken with a grain of salt as it's not an exact result (for N > 2)... But it's good enough to proove my point O

ADISCLAIMER

To be taken with a grain of salt as it's not an exact result (for N > 2)... But it's good enough to proove my point \bigcirc

Percolation and topological quantification

They are two different concepts.

Percolation: find the existence of clusters of the size of the system

Topology: measure the connectivity

It has been observed that **critical behaviour** takes place close to when **Euler Characteristic changes sign**.

🖉 B. L. Okun, Euler Charachteristic in Percolation Theory, 1989 🖉 K. R. Mecke and H. Wagner, Euler characteristic and related measures for random geometric sets, 1991 🖉 H. Tomita and C. Murakami, Percolation pattern in continuous media and its topology, 1994

Threshold κ

25

ú

25

ŝ

Threshold κ

Euler Ch

ĉ

25

Threshold κ

Threshold κ

So far we have restricted ourself.

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

So far we have restricted ourself.

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

Covariance function Gaussian covariance

We can use any covariance function that yield a mean square differentiable RF $\Rightarrow C^{(2)}(0)$ must exists and be finite.

So far we have restricted ourself.

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

Covariance function Gaussian covariance

We can use any covariance function that yield a mean square differentiable RF $\Rightarrow C^{(2)}(0)$ must exists and be finite.

Distribution Gaussian distribution

We can use Gaussian related distributions.

So far we have restricted ourself.

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

Covariance function Gaussian covariance

We can use any covariance function that yield a mean square differentiable RF $\Rightarrow C^{(2)}(0)$ must exists and be finite.

Distribution Gaussian distribution

We can use Gaussian related distributions.

Hitting set 1D (scalar RF) and $\mathcal{H}_{s} = [\kappa; \infty[$

- other subsets of \mathbb{R} like $\mathcal{H}_{s} =] \infty; \kappa] \cup [\kappa; \infty[$
- and vector valued RF leading to N-dimensional hitting sets.

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

Regarding the covariance, only the second spectral moment

$$\lambda_2 = \left. \frac{\partial^2 \boldsymbol{C}(d)}{\partial d^2} \right|_{d_0}$$

has an impact on the measure. . . which means that only the second derivative of the covariance at 0 plays a part
With the **Matérn class** we can play with the roughness (additional parameter ν):

$$\boldsymbol{C}_{\nu}(d) = \frac{\sigma^2}{\Gamma(\nu)2^{1-\nu}} \left(\frac{\sqrt{2\nu}d}{L_c}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2\nu}d}{L_c}\right)$$

🔊 Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006

With the **Matérn class** we can play with the roughness (additional parameter ν):

$$\boldsymbol{C}_{\nu}(d) = \frac{\sigma^2}{\Gamma(\nu)2^{1-\nu}} \left(\frac{\sqrt{2\nu}d}{L_c}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2\nu}d}{L_c}\right)$$

🔊 Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006

With the J-Bessel class we can have area of negative correlation:

$$\boldsymbol{C}_{\nu}(d) = \Gamma(\nu+1) \left(\frac{2L_c}{d}\right)^{\nu} \mathbf{J}_{\nu}\left(\frac{d}{L_c}\right)$$

With the J-Bessel class we can have area of negative correlation:

$$\boldsymbol{C}_{\nu}(d) = \Gamma(\nu+1) \left(\frac{2L_c}{d}\right)^{\nu} \mathbf{J}_{\nu}\left(\frac{d}{L_c}\right)$$

Gaussian related distributions

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

The gaussian related distribution of the RF impacts the Minkowski functionals

 $\mathcal{M}_i^\gamma o \mathcal{M}_i^{S(\gamma)}$

Gaussian related distributions

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

The gaussian related distribution of the RF impacts the Minkowski functionals

 $\mathcal{M}_i^\gamma o \mathcal{M}_i^{S(\gamma)}$

It is equivalent to changing the hitting set \mathcal{H}_{s} \mathcal{H}_{s} for $g_{r} = S(g)$ is equivalent to $S^{-1}(\mathcal{H}_{s})$ for g.

Gaussian related distributions

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}(\mathcal{H}_{s})$$

The gaussian related distribution of the RF impacts the Minkowski functionals

 $\mathcal{M}_i^{\gamma} \to \mathcal{M}_i^{S(\gamma)}$

It is equivalent to changing the hitting set \mathcal{H}_{s} \mathcal{H}_{s} for $g_{r} = S(g)$ is equivalent to $S^{-1}(\mathcal{H}_{s})$ for g.

But we are still going to see a simple example with the χ_k^2 to smoothly enter the real matter of **hitting sets** and vectored valued RF.

Gaussian

Gaussian

Topology of the hitting set

 $\mathcal{H}_{s} =] - \infty; -\kappa_{1}] \cup [\kappa_{1}; \infty[$

$$\mathcal{H}_{\mathsf{s}} = [\kappa_2; \infty[$$

 κ_1,κ_2 such that we have the same surface area

Topology of the hitting set

 $\mathcal{H}_{\mathsf{s}} =] - \infty; -\kappa_1] \cup [\kappa_1; \infty[$

$$\mathcal{H}_{\mathsf{s}} = [\kappa_2; \infty[$$

 κ_1,κ_2 such that we have the same surface area

Somehow the topology of the hitting set is reflected onto the topology of the excursion.

Bivariate density function

Bivariate density function

2D hitting set

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}(\mathcal{H}_{s})$$

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}(\mathcal{H}_{s})$$

• Is there a solution?

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}(\mathcal{H}_{s})$$

- Is there a solution?
- · How can we have a more pragmatic approach to explore the possibilites?

$$\mathbb{E}(\mathcal{L}_{j}(\mathcal{E}_{s})) = \sum_{i=0}^{N-j} {i+j \choose i} \frac{\omega_{i+j}}{\omega_{i}\omega_{j}} \left(\frac{\lambda_{2}}{2\pi}\right)^{i/2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}(\mathcal{H}_{s})$$

- Is there a solution?
- · How can we have a more pragmatic approach to explore the possibilites?
- Am I missing some "parameters" we can play with?

Gaussian Minkowski functionals: $\mathcal{M}_i^{\gamma_k}(\mathcal{H}_s)$

- They measure the probability of the Random Field to be in the hitting set $\mathcal{H}_{s} \subset \mathbb{R}^{k}$.
- They are Minkowski functionals associated with the measure of a Gaussian distribution γ_k .

Gaussian Minkowski functionals: $\mathcal{M}_i^{\gamma_k}(\mathcal{H}_s)$

- They measure the probability of the Random Field to be in the hitting set $\mathcal{H}_{s} \subset \mathbb{R}^{k}$.
- They are Minkowski functionals associated with the measure of a Gaussian distribution γ_k .

Kinematic formula

If $\mathbf{X} = X_i$ is a standard Gaussian vector of size k in which $X_i \sim \mathcal{N}(0, \sigma^2)$ are independent and $\mathcal{H}_s \subset \mathbb{R}^k$:

$$\gamma_k(\mathcal{H}_{\mathbf{s}}) = P(\boldsymbol{X} \in \mathcal{H}_{\mathbf{s}}) = \frac{1}{\sigma^k (2\pi)^{k/2}} \int_{\mathcal{H}_{\mathbf{s}}} e^{-\|\boldsymbol{x}\|^2 / 2\sigma^2} d\boldsymbol{x}$$

Gaussian Minkowski functionals: $\mathcal{M}_i^{\gamma_k}(\mathcal{H}_s)$

- They measure the probability of the Random Field to be in the hitting set $\mathcal{H}_{s} \subset \mathbb{R}^{k}$.
- They are Minkowski functionals associated with the measure of a Gaussian distribution γ_k .

Kinematic formula

If $\mathbf{X} = X_i$ is a standard Gaussian vector of size k in which $X_i \sim \mathcal{N}(0, \sigma^2)$ are independent and $\mathcal{H}_s \subset \mathbb{R}^k$:

$$\gamma_k(\mathcal{H}_{\mathsf{s}}) = P(\boldsymbol{X} \in \mathcal{H}_{\mathsf{s}}) = \frac{1}{\sigma^k (2\pi)^{k/2}} \int_{\mathcal{H}_{\mathsf{s}}} e^{-\|\boldsymbol{x}\|^2/2\sigma^2} d\boldsymbol{x}$$

If $\mathcal{K}(A,\rho)$ is the tube of A or ray ρ we have the following Taylor expansion:

$$\gamma_k(\mathcal{K}(\mathcal{H}_{\mathsf{s}},\rho)) = \sum_{j=0}^{\infty} \frac{\rho^j}{j!} \mathcal{M}_i^{\gamma_k}(\mathcal{H}_{\mathsf{s}})$$

🗐 J. Taylor, A Gaussian kinematic formula, 2006

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_i^{\gamma}(\mathcal{H}_s)$

Hitting set, Tube and expansions

 $\mathcal{H}_{\mathsf{s}} \text{ and Tube } \quad \mathcal{H}_{\mathsf{s}} = [\kappa, \infty[\quad \text{and} \quad \mathcal{K}(\mathcal{H}_{\mathsf{s}}) = [\kappa - \rho, \infty[$

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_i^{\gamma}(\mathcal{H}_s)$

Hitting set, Tube and expansions

 $\begin{aligned} \mathcal{H}_{\mathsf{s}} \text{ and Tube } \quad \mathcal{H}_{\mathsf{s}} &= [\kappa, \infty[\quad \text{and} \quad \mathcal{K}(\mathcal{H}_{\mathsf{s}}) = [\kappa - \rho, \infty[\\ \text{Measures } \quad \gamma(\mathcal{H}_{\mathsf{s}}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\kappa}^{\infty} e^{-x^2/\sigma^2} dx = \bar{F}(\kappa) \quad \text{and} \quad \gamma(\mathcal{K}(\mathcal{H}_{\mathsf{s}})) = \bar{F}(\kappa - \rho) \end{aligned}$

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_i^{\gamma}(\mathcal{H}_s)$

Hitting set, Tube and expansions

$$\begin{aligned} \mathcal{H}_{s} \text{ and Tube } & \mathcal{H}_{s} = [\kappa, \infty[\text{ and } \mathcal{K}(\mathcal{H}_{s}) = [\kappa - \rho, \infty[\\ \text{Measures } \gamma(\mathcal{H}_{s}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\kappa}^{\infty} e^{-x^{2}/\sigma^{2}} dx = \bar{F}(\kappa) \text{ and } \gamma(\mathcal{K}(\mathcal{H}_{s})) = \bar{F}(\kappa - \rho) \\ \text{Expansions } \gamma(\mathcal{K}(\mathcal{H}_{s})) = \bar{F}(\kappa - \rho) = \underbrace{\sum_{i=0}^{\infty} \frac{(-1\rho)^{i}}{j!} \bar{F}^{(i)}(\kappa)}_{\text{For small } \rho} \end{aligned}$$

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_i^{\gamma}(\mathcal{H}_s)$

Hitting set, Tube and expansions

$$\begin{aligned} \mathcal{H}_{\mathsf{s}} \text{ and Tube } & \mathcal{H}_{\mathsf{s}} = [\kappa, \infty[\text{ and } \mathcal{K}(\mathcal{H}_{\mathsf{s}}) = [\kappa - \rho, \infty[\\ \text{Measures } \gamma(\mathcal{H}_{\mathsf{s}}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\kappa}^{\infty} e^{-x^{2}/\sigma^{2}} dx = \bar{F}(\kappa) \text{ and } \gamma(\mathcal{K}(\mathcal{H}_{\mathsf{s}})) = \bar{F}(\kappa - \rho) \\ \text{Expansions } \gamma(\mathcal{K}(\mathcal{H}_{\mathsf{s}})) = \bar{F}(\kappa - \rho) = \underbrace{\sum_{i=0}^{\infty} \frac{(-1\rho)^{i}}{j!} \bar{F}^{(i)}(\kappa)}_{\text{For small } \rho} = \underbrace{\sum_{i=0}^{\infty} \frac{\rho^{i}}{j!} \mathcal{M}_{i}^{\gamma}(\mathcal{H}_{\mathsf{s}})}_{\text{Kinematic formula}} \end{aligned}$$

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_i^{\gamma}(\mathcal{H}_s)$

Hitting set, Tube and expansions

$$\mathcal{H}_{s} \text{ and Tube } \mathcal{H}_{s} = [\kappa, \infty[\text{ and } \mathcal{K}(\mathcal{H}_{s}) = [\kappa - \rho, \infty[\\ \text{Measures } \gamma(\mathcal{H}_{s}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{\kappa}^{\infty} e^{-x^{2}/\sigma^{2}} dx = \bar{F}(\kappa) \text{ and } \gamma(\mathcal{K}(\mathcal{H}_{s})) = \bar{F}(\kappa - \rho) \\ \text{Expansions } \gamma(\mathcal{K}(\mathcal{H}_{s})) = \bar{F}(\kappa - \rho) = \underbrace{\sum_{i=0}^{\infty} \frac{(-1\rho)^{i}}{j!} \bar{F}^{(i)}(\kappa)}_{\text{For small } \rho} = \underbrace{\sum_{i=0}^{\infty} \frac{\rho^{i}}{j!} \mathcal{M}_{i}^{\gamma}(\mathcal{H}_{s})}_{\text{Kinematic formula}}$$

Identification of the Gaussian Minkowski Functionals

 $\mathcal{M}_i^{\gamma}(\mathcal{H}_{\mathbf{s}}) = (-1)^j \bar{F}^{(i)}(\kappa)$

Volume Fraction

$$\mathbb{E}\{\Phi\} = \frac{1}{\sqrt{\pi}} \int_{\kappa/\sigma}^{\infty} e^{-t^2} dt$$

Euler Characteristic

With the scale ratio $\beta = {\rm size}(M)/L_c$

$$\mathbb{E}\{\chi\} = \left[\frac{\beta^3}{\sqrt{2}\pi^2} \left(\frac{\kappa^2}{\sigma^2} - 1\right) + \frac{3\beta^2}{\sqrt{2}\pi^{3/2}}\frac{\kappa}{\sigma} + \frac{3\beta}{\sqrt{2}\pi}\right]e^{-\kappa^2/2\sigma^2} + \frac{1}{\sqrt{\pi}}\int_{\kappa/\sigma}^{\infty}e^{-t^2}dt$$

Volume Fraction

$$\mathbb{E}\{\Phi\} = \frac{1}{\sqrt{\pi}} \int_{\kappa/\sigma}^{\infty} e^{-t^2} dt$$

Euler Characteristic

With the scale ratio $\beta = \operatorname{size}(M)/L_c$

$$\mathbb{E}\{\chi\} = \left[\frac{\beta^3}{\sqrt{2}\pi^2} \left(\frac{\kappa^2}{\sigma^2} - 1\right) + \frac{3\beta^2}{\sqrt{2}\pi^{3/2}}\frac{\kappa}{\sigma} + \frac{3\beta}{\sqrt{2}\pi}\right]e^{-\kappa^2/2\sigma^2} + \frac{1}{\sqrt{\pi}}\int_{\kappa/\sigma}^{\infty} e^{-t^2}dt$$

📕 R.J. Adler, Random Fields and Geometry, 1976

Volume Fraction

$$\mathbb{E}\{\Phi\} = \frac{1}{\sqrt{\pi}} \int_{\kappa/\sigma}^{\infty} e^{-t^2} dt$$

Euler Characteristic

With the scale ratio $\beta = \operatorname{size}(M)/L_c$

$$\mathbb{E}\{\chi\} = \left[\frac{\beta^3}{\sqrt{2}\pi^2} \left(\frac{\kappa^2}{\sigma^2} - 1\right) + \frac{3\beta^2}{\sqrt{2}\pi^{3/2}}\frac{\kappa}{\sigma} + \frac{3\beta}{\sqrt{2}\pi}\right]e^{-\kappa^2/2\sigma^2} + \frac{1}{\sqrt{\pi}}\int_{\kappa/\sigma}^{\infty} e^{-t^2}dt$$

📕 R.J. Adler, Random Fields and Geometry, 1976 📕 K.J. Worsley, The geometry of random images, 1996