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Who am I?

I’m a classical physisist in geo-mechanics.

I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, . . . ) and
related physical phenomena (thermo-hydro-meca. . . )

Structures
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Scales: mm, µm, nm
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Tomographic images

Apparatus for in situ tension test
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Tomographic images

Projection θ1 Projection θi Projection θn Reconstruction

Attenuation field 6= correlated Random Field

Noise + heterogeneous phases ⇒ bi/trinarisation needed
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From images to simulations

Specimen Simulations (model)
Cracks / displacements

Morphological model

Tomography takes a lot of time ⇒ We need morphological models
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From images to simulations

Real morphology Equivalent spheres Other positions

Getting an accurate representation of the morphology is of crucial importance!
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Morphological models

Goals
• Random aspect in terms of shapes and positions

• Discrete aspect

• Control geometrical and topological quantities

Hard sphere packing Excursion sets
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Correlated Random Fields

Stricly stationnary correlated Random Field with:

• Gaussian distribution

, or Gaussian related

• Gaussian covariance function

or anything that makes MS differentiable RF
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Excursion sets

An excursion set Es is the result of the “threshold” of a realisation of a RF:

Es = {x ∈M | g(x) ∈ Hs}

where M is the domain of definition of the RF and Hs the so called Hitting Set.

For example if we set Hs =]−∞;κ] we have Es(κ) = {x ∈M | g(x) ≤ κ}

x

M

g

κ

Hs

Es(κ)

Excursion with “low” threshold

x

M

g
κ

Hs

Es(κ)

Excursion with “high” threshold
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Excursion sets

Medium Lc

Correlated Random Fields
g : Ω× R3 7→ R

Continuous aspect
parametric variability

Large Lc Small Lc

Heterogeneity sizes

x y

Observation scale

Excursion sets
Es = {x ∈M | g(x) ∈ Hs}

Discrete aspect
explicit morphology

Heterogeneity sizes
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Excursion sets
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Families of measures

It exists several families of measures (Minkowski functionals, Lipschitz-Killing
curvatures. . . ). In an N−dimensional space, the size of the base is N + 1 where each
element can be seen as a n−dimensional measure.
Each measure can be classified into two types:

• geometrical measures (1 ≤ n ≤ N)

• topological measure (n = 0)

In 3D it’s equivalent of considering:

n = 3: Volume

n = 2: Surface area

n = 1: Total curvature

n = 0: Euler Characteristic
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Average of the measures over the threshold

Threshold κ

Evolution of the 4 measures?
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Mean value of the measures over the threshold
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The expectation formula

In the context of excursion sets of correlated Random Fields each measure Lj is a
Random Variable.
They have a distribution that depends on:

• the parameters of the correlated Random Field (C(x,y), fX(x),M)

• the hitting set (κ)

We don’t know the distribution but we know its expected value:

E(Lj(Es)) =f(j, Lc, µ, σ,M, κ)

=

N−j∑
i=0

(
i+ j

i

)
ωi+j
ωiωj

(
λ2
2π

)i/2
Li+j(M)Mγ

i (κ)

� R. Adler, Some new random field tools for spatial analysis, 2008
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Mean value of the measures over the threshold
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Let’s simplify our goals

• 3D manifold

• with high volume fractions (L3 > 50%)

• made of disconnected components (“L0 > 0”)

23



Links between percolation theory and topology

oDISCLAIMER

To be taken with a grain of salt as it’s not an exact result (for N > 2). . .
But it’s good enough to proove my point �

Percolation and topological quantification

They are two different concepts.

Percolation: find the existence of clusters of the size of the system

Topology: measure the connectivity

It has been observed that critical behaviour takes place close to when Euler Charac-
teristic changes sign.

� B. L. Okun, Euler Charachteristic in Percolation Theory, 1989 � K. R. Mecke and H. Wagner, Euler characteristic and related measures for random
geometric sets, 1991 � H. Tomita and C. Murakami, Percolation pattern in continuous media and its topology, 1994
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Links between percolation theory and topology
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Links between percolation theory and topology
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Links between percolation theory and topology

−5 −4 −3 −2 −1 0 1 2 3 4 5

−500

−250

0

250

500

750

1,000

Disconnected topologyHigh volume fraction

Threshold κ

Euler Characteristic
Volume

26



“Parameters” we can play with

So far we have restricted ourself.

E(Lj(Es)) =

N−j∑
i=0

(
i+ j

i

)
ωi+j
ωiωj

(
λ2
2π

)i/2
Li+j(M)Mi(Hs)

Covariance function Gaussian covariance
We can use any covariance function that yield a mean square differentiable RF
⇒ C(2)(0) must exists and be finite.

Distribution Gaussian distribution
We can use Gaussian related distributions.

Hitting set 1D (scalar RF) and Hs = [κ;∞[

• other subsets of R like Hs =]−∞;κ] ∪ [κ;∞[

• and vector valued RF leading to N-dimensional hitting sets.
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Covariance function

E(Lj(Es)) =

N−j∑
i=0

(
i+ j

i

)
ωi+j
ωiωj

(
λ2
2π

)i/2
Li+j(M)Mi(Hs)

Regarding the covariance, only the second spectral moment

λ2 =
∂2C(d)

∂d2

∣∣∣∣
d0

has an impact on the measure. . . which means that only the second derivative of the
covariance at 0 plays a part À
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Covariance function

With the Matérn class we can play with the roughness (additional parameter ν):

Cν(d) =
σ2

Γ(ν)21−ν

(√
2νd

Lc

)ν
Kν

(√
2νd

Lc

)

ν → ∞ (Gaussian) ν = 3/2 ν = 1

� Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006 29
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Covariance function

With the J-Bessel class we can have area of negative correlation:

Cν(d) = Γ(ν + 1)

(
2Lc
d

)ν
Jν

(
d

Lc

)

ν = 1/2 (Wave) ν = 1 ν = 3/2
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Gaussian related distributions

E(Lj(Es)) =

N−j∑
i=0

(
i+ j

i

)
ωi+j
ωiωj

(
λ2
2π

)i/2
Li+j(M)Mi(Hs)

The gaussian related distribution of the RF impacts the Minkowski functionals

Mγ
i →M

S(γ)
i

It is equivalent to changing the hitting set Hs

Hs for gr = S(g) is equivalent to S−1(Hs) for g.

But we are still going to see a simple example with the χ2
k to smoothly enter the real matter of

hitting sets and vectored valued RF.
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Gaussian related distributions: χ2
k

Hs = [κ;∞[

χ2
1

Hs = ]−∞;−
√
κ] ∪ [

√
κ;∞[

Gaussian

Hs = ]−∞;−
√
κ] ∪ [

√
κ;∞[Hs = [κ;∞[

=
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Topology of the hitting set

Hs = ]−∞;−κ1] ∪ [κ1;∞[ Hs = [κ2;∞[

κ1, κ2 such that we have the same surface area

Somehow the topology of the hitting set is reflected onto the topology of the excursion.
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Hitting sets in higher dimensions

Bivariate density function

2D hitting set 3D excursion
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Questions

E(Lj(Es)) =

N−j∑
i=0

(
i+ j

i

)
ωi+j
ωiωj

(
λ2
2π

)i/2
Li+j(M)Mγ

i (Hs)

• Is there a solution?

• How can we have a more pragmatic approach to explore the possibilites?

• Am I missing some “parameters” we can play with?
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The expectation formula

Gaussian Minkowski functionals: Mγk
i (Hs)

• They measure the probability of the Random Field to be in the hitting set Hs ⊂ Rk.
• They are Minkowski functionals associated with the measure of a Gaussian distribution γk.

Kinematic formula

IfX = Xi is a standard Gaussian vector of size k in whichXi ∼ N (0, σ2) are independant
and Hs ⊂ Rk:

γk(Hs) = P (X ∈ Hs) =
1

σk(2π)k/2

∫
Hs

e−‖x‖
2/2σ2

dx

If K(A, ρ) is the tube of A or ray ρ we have the following Taylor expansion:

γk(K(Hs, ρ)) =
∞∑
j=0

ρj

j!
Mγk

i (Hs)

� J. Taylor, A Gaussian kinematic formula, 2006
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The expectation formula

Application to scalar valued Gaussian Random Fields: Mγ
i (Hs)

Hitting set, Tube and expansions

Hs and Tube Hs = [κ,∞[ and K(Hs) = [κ− ρ,∞[

Measures γ(Hs) =
1

σ
√

2π

∫ ∞
κ

e−x
2/σ2

dx = F̄ (κ) and γ(K(Hs)) = F̄ (κ− ρ)

Expansions γ(K(Hs)) = F̄ (κ− ρ) =
∞∑
i=0

(−1ρ)i

j!
F̄ (i)(κ)︸ ︷︷ ︸

For small ρ

=

∞∑
i=0

ρi

j!
Mγ

i (Hs)︸ ︷︷ ︸
Kinematic formula

Identification of the Gaussian Minkowski Functionals

Mγ
i (Hs) = (−1)jF̄ (i)(κ)
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The expectation formula

Volume Fraction

E{Φ} =
1√
π

∫ ∞
κ/σ

e−t
2

dt

Euler Characteristic

With the scale ratio β = size(M)/Lc

E{χ} =

[
β3

√
2π2

(
κ2

σ2
− 1

)
+

3β2

√
2π3/2

κ

σ
+

3β√
2π

]
e−κ

2/2σ2

+
1√
π

∫ ∞
κ/σ

e−t
2

dt

� R.J. Adler, Random Fields and Geometry, 1976 � K.J. Worsley, The geometry of random images, 1996
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