Stochastic Geometry days - 2023

Morphological modeling of the microstructure of geo-materials Current limitations of the excursion set theory... as I understand it.

Emmanuel Roubin
2023/06/15

Laboratoire 3SR
Université Grenoble Alpes (France)

Who am I?

I'm a classical physisist in geo-mechanics.
I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, ...) and related physical phenomena (thermo-hydro-meca...)

Who am I?

I'm a classical physisist in geo-mechanics.
I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, ...) and related physical phenomena (thermo-hydro-meca...)

Structures
Scale: > m

Who am I?

I'm a classical physisist in geo-mechanics.

I study the mechanical behavior of geo-materials (rocks, clays, earth, concrete, ...) and related physical phenomena (thermo-hydro-meca...)

Why am I here?

Why am I here?

Correlated Random Field

Why am I here?

Excursion of Correlated Random Field

Outline

1. Motivations

Tomography
From images to simulations
2. Excursions as a morphological model Morphological models
Excursions of correlated Random Fields
3. The Excursion Set Theory Global descriptors Expectations of the measures
4. Limitations of the model Percolation and topology Solutions?

Tomographic images

Apparatus for in situ tension test

Tomographic images

Tomographic images

Attenuation field \neq correlated Random Field

Noise + heterogeneous phases \Rightarrow bi/trinarisation needed

Tomographic images

Laboratory tomographs

International facilities

Tomographic images
Laboratory tomographs

International facilities

Tomographic images
Laboratory tomographs

International facilities

Tomographic images
Laboratory tomographs
International facilities

Tomographic images
Laboratory tomographs

Tomographic images
Laboratory tomographs

International facilities

From images to simulations

Specimen

From images to simulations

Specimen X-Ray Tomography

From images to simulations

Specimen X-Ray Tomography Morphology Identification

From images to simulations

Specimen X-Ray Tomography Morphology Identification

From images to simulations

Morphology Identification	Simulations (model) Cracks / displacements

From images to simulations

Tomography takes a lot of time \Rightarrow We need morphological models

From images to simulations

Real morphology

Equivalent spheres

Other positions

From images to simulations

Real morphology

Equivalent spheres

Other positions

Getting an accurate representation of the morphology is of crucial importance!

Outline

1. Motivations
 Tomography
 From images to simulations

2. Excursions as a morphological model Morphological models
Excursions of correlated Random Fields
3. The Excursion Set Theory Global descriptors
Expectations of the measures
4. Limitations of the model

Percolation and topology
Solutions?

Morphological models

Goals

- Random aspect in terms of shapes and positions
- Discrete aspect
- Control geometrical and topological quantities

Morphological models

Goals

- Random aspect in terms of shapes and positions
- Discrete aspect
- Control geometrical and topological quantities

Hard sphere packing

Morphological models

Goals

- Random aspect in terms of shapes and positions
- Discrete aspect
- Control geometrical and topological quantities

Hard sphere packing

Excursion sets

Correlated Random Fields

Stricly stationnary correlated Random Field with:

- Gaussian distribution
- Gaussian covariance function

Correlated Random Fields

Stricly stationnary correlated Random Field with:

- Gaussian distribution, or Gaussian related
- Gaussian covariance function

Correlated Random Fields

Stricly stationnary correlated Random Field with:

- Gaussian distribution, or Gaussian related
- Gaussian covariance function or anything that makes MS differentiable RF

Excursion sets

An excursion set \mathcal{E}_{s} is the result of the "threshold" of a realisation of a RF:

$$
\mathcal{E}_{\mathbf{s}}=\left\{\boldsymbol{x} \in M \mid g(\boldsymbol{x}) \in \mathcal{H}_{\mathrm{s}}\right\}
$$

where M is the domain of definition of the RF and \mathcal{H}_{s} the so called Hitting Set.

For example if we set $\left.\left.\mathcal{H}_{\mathbf{s}}=\right]-\infty ; \kappa\right]$ we have $\mathcal{E}_{\mathbf{s}}(\kappa)=\{\boldsymbol{x} \in M \mid g(\boldsymbol{x}) \leq \kappa\}$

Excursion with "low" threshold

Excursion with "high" threshold

Excursion sets

Excursion sets

Excursion sets

Outline

```
1. Motivations
Tomography
From images to simulations
```

2. Excursions as a morphological model

Morphological models
Excursions of correlated Random Fields
3. The Excursion Set Theory Global descriptors Expectations of the measures
4. Limitations of the model Percolation and topology Solutions?

Families of measures

It exists several families of measures (Minkowski functionals, Lipschitz-Killing curvatures...). In an N-dimensional space, the size of the base is $N+1$ where each element can be seen as a n-dimensional measure.
Each measure can be classified into two types:

- geometrical measures $(1 \leq n \leq N)$
- topological measure ($n=0$)

Families of measures

It exists several families of measures (Minkowski functionals, Lipschitz-Killing curvatures...). In an N-dimensional space, the size of the base is $N+1$ where each element can be seen as a n-dimensional measure.
Each measure can be classified into two types:

- geometrical measures $(1 \leq n \leq N)$
- topological measure ($n=0$)

In 3D it's equivalent of considering:
$n=3$: Volume
$n=1$: Total curvature
$n=2$: Surface area
$n=0$: Euler Characteristic

Average of the measures over the threshold

Average of the measures over the threshold

Evolution of the 4 measures?

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

Mean value of the measures over the threshold

In the context of excursion sets of correlated Random Fields each measure \mathcal{L}_{j} is a Random Variable.
They have a distribution that depends on:

- the parameters of the correlated Random Field $\left(C(x, y), f_{X}(x), M\right)$
- the hitting set (κ)

The expectation formula

In the context of excursion sets of correlated Random Fields each measure \mathcal{L}_{j} is a Random Variable.
They have a distribution that depends on:

- the parameters of the correlated Random Field $\left(C(x, y), f_{X}(x), M\right)$
- the hitting set (κ)

We don't know the distribution but we know its expected value:

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathrm{s}}\right)\right)=f\left(j, L_{c}, \mu, \sigma, M, \kappa\right)
$$

The expectation formula

In the context of excursion sets of correlated Random Fields each measure \mathcal{L}_{j} is a Random Variable.
They have a distribution that depends on:

- the parameters of the correlated Random Field $\left(C(x, y), f_{X}(x), M\right)$
- the hitting set (κ)

We don't know the distribution but we know its expected value:

$$
\begin{aligned}
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right) & =f\left(j, L_{c}, \mu, \sigma, M, \kappa\right) \\
& =\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}(\kappa)
\end{aligned}
$$

Mean value of the measures over the threshold

Outline

```
1. Motivations
Tomography
From images to simulations
```

2. Excursions as a morphological model Morphological models
Excursions of correlated Random Fields
3. The Excursion Set Theory Global descriptors
Expectations of the measures
4. Limitations of the model

Percolation and topology Solutions?

Let's simplify our goals

- 3D manifold
- with high volume fractions $\left(\mathcal{L}_{3}>50 \%\right)$
- made of disconnected components (" $\mathcal{L}_{0}>0$ ")

Links between percolation theory and topology

A DISCLAIMER

To be taken with a grain of salt as it's not an exact result (for $N>2$)...
But it's good enough to proove my point ();

Links between percolation theory and topology

A DISCLAIMER

To be taken with a grain of salt as it's not an exact result (for $N>2$)
But it's good enough to proove my point ;)

Percolation and topological quantification

They are two different concepts.
Percolation: find the existence of clusters of the size of the system
Topology: measure the connectivity
It has been observed that critical behaviour takes place close to when Euler Characteristic changes sign.

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

Links between percolation theory and topology

"Parameters" we can play with

So far we have restricted ourself.

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

So far we have restricted ourself.

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

Covariance function Gaussian covariance
We can use any covariance function that yield a mean square differentiable RF $\Rightarrow \boldsymbol{C}^{(2)}(0)$ must exists and be finite.

So far we have restricted ourself.

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

Covariance function Gaussian covariance
We can use any covariance function that yield a mean square differentiable RF $\Rightarrow \boldsymbol{C}^{(2)}(0)$ must exists and be finite.
Distribution Gaussian distribution
We can use Gaussian related distributions.

So far we have restricted ourself.

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

Covariance function Gaussian covariance
We can use any covariance function that yield a mean square differentiable RF $\Rightarrow \boldsymbol{C}^{(2)}(0)$ must exists and be finite.
Distribution Gaussian distribution
We can use Gaussian related distributions.
Hitting set 1D (scalar RF) and $\mathcal{H}_{\mathrm{s}}=[\kappa ; \infty[$

- other subsets of \mathbb{R} like $\left.\left.\mathcal{H}_{\mathrm{s}}=\right]-\infty ; \kappa\right] \cup[\kappa ; \infty[$
- and vector valued RF leading to N -dimensional hitting sets.

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

Regarding the covariance, only the second spectral moment

$$
\lambda_{2}=\left.\frac{\partial^{2} \boldsymbol{C}(d)}{\partial d^{2}}\right|_{d_{0}}
$$

has an impact on the measure... which means that only the second derivative of the covariance at 0 plays a part \mathcal{E}

Covariance function

With the Matérn class we can play with the roughness (additional parameter ν):

$$
\boldsymbol{C}_{\nu}(d)=\frac{\sigma^{2}}{\Gamma(\nu) 2^{1-\nu}}\left(\frac{\sqrt{2 \nu} d}{L_{c}}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} d}{L_{c}}\right)
$$

Covariance function

With the Matérn class we can play with the roughness (additional parameter ν):

$$
\boldsymbol{C}_{\nu}(d)=\frac{\sigma^{2}}{\Gamma(\nu) 2^{1-\nu}}\left(\frac{\sqrt{2 \nu} d}{L_{c}}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} d}{L_{c}}\right)
$$

Covariance function

With the J-Bessel class we can have area of negative correlation:

$$
C_{\nu}(d)=\Gamma(\nu+1)\left(\frac{2 L_{c}}{d}\right)^{\nu} \mathrm{J}_{\nu}\left(\frac{d}{L_{c}}\right)
$$

$\nu=1$

Covariance function

With the J-Bessel class we can have area of negative correlation:

$$
\boldsymbol{C}_{\nu}(d)=\Gamma(\nu+1)\left(\frac{2 L_{c}}{d}\right)^{\nu} \mathrm{J}_{\nu}\left(\frac{d}{L_{c}}\right)
$$

Gaussian related distributions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathrm{s}}\right)
$$

The gaussian related distribution of the RF impacts the Minkowski functionals

$$
\mathcal{M}_{i}^{\gamma} \rightarrow \mathcal{M}_{i}^{S(\gamma)}
$$

Gaussian related distributions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathrm{s}}\right)
$$

The gaussian related distribution of the RF impacts the Minkowski functionals

$$
\mathcal{M}_{i}^{\gamma} \rightarrow \mathcal{M}_{i}^{S(\gamma)}
$$

It is equivalent to changing the hitting set \mathcal{H}_{5} \mathcal{H}_{s} for $g_{r}=S(g)$ is equivalent to $S^{-1}\left(\mathcal{H}_{\mathrm{s}}\right)$ for g.

Gaussian related distributions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}\left(\mathcal{H}_{\mathrm{s}}\right)
$$

The gaussian related distribution of the RF impacts the Minkowski functionals

$$
\mathcal{M}_{i}^{\gamma} \rightarrow \mathcal{M}_{i}^{S(\gamma)}
$$

It is equivalent to changing the hitting set \mathcal{H}_{s} \mathcal{H}_{s} for $g_{r}=S(g)$ is equivalent to $S^{-1}\left(\mathcal{H}_{\mathrm{s}}\right)$ for g.

But we are still going to see a simple example with the χ_{k}^{2} to smoothly enter the real matter of hitting sets and vectored valued RF.

Gaussian related distributions: χ_{k}^{2}

Gaussian

Gaussian related distributions: χ_{k}^{2}

$$
\mathcal{H}_{\mathrm{s}}=[\kappa ; \infty[
$$

Gaussian

Gaussian related distributions: χ_{k}^{2}

Gaussian related distributions: χ_{k}^{2}

Topology of the hitting set

κ_{1}, κ_{2} such that we have the same surface area

Topology of the hitting set

κ_{1}, κ_{2} such that we have the same surface area

Somehow the topology of the hitting set is reflected onto the topology of the excursion.

Hitting sets in higher dimensions

Bivariate density function

Hitting sets in higher dimensions

Bivariate density function

Hitting sets in higher dimensions

Questions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)
$$

Questions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

- Is there a solution?

Questions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathrm{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)
$$

- Is there a solution?
- How can we have a more pragmatic approach to explore the possibilites?

Questions

$$
\mathbb{E}\left(\mathcal{L}_{j}\left(\mathcal{E}_{\mathbf{s}}\right)\right)=\sum_{i=0}^{N-j}\binom{i+j}{i} \frac{\omega_{i+j}}{\omega_{i} \omega_{j}}\left(\frac{\lambda_{2}}{2 \pi}\right)^{i / 2} \mathcal{L}_{i+j}(M) \mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathbf{s}}\right)
$$

- Is there a solution?
- How can we have a more pragmatic approach to explore the possibilites?
- Am I missing some "parameters" we can play with?

The expectation formula

Gaussian Minkowski functionals: $\mathcal{M}_{i}^{\gamma_{k}}\left(\mathcal{H}_{\mathrm{s}}\right)$

- They measure the probability of the Random Field to be in the hitting set $\mathcal{H}_{\mathrm{s}} \subset \mathbb{R}^{k}$.
- They are Minkowski functionals associated with the measure of a Gaussian distribution γ_{k}.

The expectation formula

Gaussian Minkowski functionals: $\mathcal{M}_{i}^{\gamma_{k}}\left(\mathcal{H}_{\mathrm{s}}\right)$

- They measure the probability of the Random Field to be in the hitting set $\mathcal{H}_{s} \subset \mathbb{R}^{k}$.
- They are Minkowski functionals associated with the measure of a Gaussian distribution γ_{k}.

Kinematic formula

If $\boldsymbol{X}=X_{i}$ is a standard Gaussian vector of size k in which $X_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are independant and $\mathcal{H}_{\mathrm{s}} \subset \mathbb{R}^{k}$:

$$
\gamma_{k}\left(\mathcal{H}_{\mathrm{s}}\right)=P\left(\boldsymbol{X} \in \mathcal{H}_{\mathrm{s}}\right)=\frac{1}{\sigma^{k}(2 \pi)^{k / 2}} \int_{\mathcal{H}_{\mathrm{s}}} e^{-\|\boldsymbol{x}\|^{2} / 2 \sigma^{2}} d \boldsymbol{x}
$$

The expectation formula

Gaussian Minkowski functionals: $\mathcal{M}_{i}^{\gamma_{k}}\left(\mathcal{H}_{\mathrm{s}}\right)$

- They measure the probability of the Random Field to be in the hitting set $\mathcal{H}_{s} \subset \mathbb{R}^{k}$.
- They are Minkowski functionals associated with the measure of a Gaussian distribution γ_{k}.

Kinematic formula

If $\boldsymbol{X}=X_{i}$ is a standard Gaussian vector of size k in which $X_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are independant and $\mathcal{H}_{\mathrm{s}} \subset \mathbb{R}^{k}$:

$$
\gamma_{k}\left(\mathcal{H}_{\mathrm{s}}\right)=P\left(\boldsymbol{X} \in \mathcal{H}_{\mathrm{s}}\right)=\frac{1}{\sigma^{k}(2 \pi)^{k / 2}} \int_{\mathcal{H}_{\mathrm{s}}} e^{-\|\boldsymbol{x}\|^{2} / 2 \sigma^{2}} d \boldsymbol{x}
$$

If $\mathcal{K}(A, \rho)$ is the tube of A or ray ρ we have the following Taylor expansion:

$$
\gamma_{k}\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}, \rho\right)\right)=\sum_{j=0}^{\infty} \frac{\rho^{j}}{j!} \mathcal{M}_{i}^{\gamma_{k}}\left(\mathcal{H}_{\mathrm{s}}\right)
$$

The expectation formula

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)$

Hitting set, Tube and expansions
\mathcal{H}_{s} and Tube $\mathcal{H}_{\mathrm{s}}=\left[\kappa, \infty\left[\right.\right.$ and $\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)=[\kappa-\rho, \infty[$

The expectation formula

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)$

Hitting set, Tube and expansions
\mathcal{H}_{s} and Tube $\mathcal{H}_{\mathrm{s}}=\left[\kappa, \infty\left[\right.\right.$ and $\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)=[\kappa-\rho, \infty[$
Measures $\quad \gamma\left(\mathcal{H}_{\mathrm{s}}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\kappa}^{\infty} e^{-x^{2} / \sigma^{2}} d x=\bar{F}(\kappa) \quad$ and $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)\right)=\bar{F}(\kappa-\rho)$

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)$

Hitting set, Tube and expansions
\mathcal{H}_{s} and Tube $\mathcal{H}_{\mathrm{s}}=\left[\kappa, \infty\left[\right.\right.$ and $\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)=[\kappa-\rho, \infty[$
Measures $\quad \gamma\left(\mathcal{H}_{\mathrm{s}}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\kappa}^{\infty} e^{-x^{2} / \sigma^{2}} d x=\bar{F}(\kappa) \quad$ and $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)\right)=\bar{F}(\kappa-\rho)$
Expansions $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathbf{s}}\right)\right)=\bar{F}(\kappa-\rho)=\underbrace{\sum_{i=0}^{\infty} \frac{(-1 \rho)^{i}}{j!} \bar{F}^{(i)}(\kappa)}_{\text {For small } \rho}$

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)$

Hitting set, Tube and expansions

\mathcal{H}_{s} and Tube $\mathcal{H}_{\mathrm{s}}=\left[\kappa, \infty\left[\right.\right.$ and $\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)=[\kappa-\rho, \infty[$
Measures $\quad \gamma\left(\mathcal{H}_{\mathrm{s}}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\kappa}^{\infty} e^{-x^{2} / \sigma^{2}} d x=\bar{F}(\kappa) \quad$ and $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)\right)=\bar{F}(\kappa-\rho)$
Expansions $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)\right)=\bar{F}(\kappa-\rho)=\underbrace{\sum_{i=0}^{\infty} \frac{(-1 \rho)^{i}}{j!} \bar{F}^{(i)}(\kappa)}_{\text {For small } \rho}=\underbrace{\sum_{i=0}^{\infty} \frac{\rho^{i}}{j!} \mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)}_{\text {Kinematic formula }}$

The expectation formula

Application to scalar valued Gaussian Random Fields: $\mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)$
Hitting set, Tube and expansions
\mathcal{H}_{s} and Tube $\mathcal{H}_{\mathrm{s}}=\left[\kappa, \infty\left[\right.\right.$ and $\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)=[\kappa-\rho, \infty[$
Measures $\quad \gamma\left(\mathcal{H}_{\mathrm{s}}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\kappa}^{\infty} e^{-x^{2} / \sigma^{2}} d x=\bar{F}(\kappa) \quad$ and $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)\right)=\bar{F}(\kappa-\rho)$
Expansions $\quad \gamma\left(\mathcal{K}\left(\mathcal{H}_{\mathrm{s}}\right)\right)=\bar{F}(\kappa-\rho)=\underbrace{\sum_{i=0}^{\infty} \frac{(-1 \rho)^{i}}{j!} \bar{F}^{(i)}(\kappa)}_{\text {For small } \rho}=\underbrace{\sum_{i=0}^{\infty} \frac{\rho^{i}}{j!} \mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)}_{\text {Kinematic formula }}$

Identification of the Gaussian Minkowski Functionals

$$
\mathcal{M}_{i}^{\gamma}\left(\mathcal{H}_{\mathrm{s}}\right)=(-1)^{j} \bar{F}^{(i)}(\kappa)
$$

Volume Fraction

$$
\mathbb{E}\{\Phi\}=\frac{1}{\sqrt{\pi}} \int_{\kappa / \sigma}^{\infty} e^{-t^{2}} d t
$$

Euler Characteristic

With the scale ratio $\beta=\operatorname{size}(M) / L_{c}$

$$
\mathbb{E}\{\chi\}=\left[\frac{\beta^{3}}{\sqrt{2} \pi^{2}}\left(\frac{\kappa^{2}}{\sigma^{2}}-1\right)+\frac{3 \beta^{2}}{\sqrt{2} \pi^{3 / 2}} \frac{\kappa}{\sigma}+\frac{3 \beta}{\sqrt{2} \pi}\right] e^{-\kappa^{2} / 2 \sigma^{2}}+\frac{1}{\sqrt{\pi}} \int_{\kappa / \sigma}^{\infty} e^{-t^{2}} d t
$$

Volume Fraction

$$
\mathbb{E}\{\Phi\}=\frac{1}{\sqrt{\pi}} \int_{\kappa / \sigma}^{\infty} e^{-t^{2}} d t
$$

Euler Characteristic

With the scale ratio $\beta=\operatorname{size}(M) / L_{c}$

$$
\mathbb{E}\{\chi\}=\left[\frac{\beta^{3}}{\sqrt{2} \pi^{2}}\left(\frac{\kappa^{2}}{\sigma^{2}}-1\right)+\frac{3 \beta^{2}}{\sqrt{2} \pi^{3 / 2}} \frac{\kappa}{\sigma}+\frac{3 \beta}{\sqrt{2} \pi}\right] e^{-\kappa^{2} / 2 \sigma^{2}}+\frac{1}{\sqrt{\pi}} \int_{\kappa / \sigma}^{\infty} e^{-t^{2}} d t
$$

Volume Fraction

$$
\mathbb{E}\{\Phi\}=\frac{1}{\sqrt{\pi}} \int_{\kappa / \sigma}^{\infty} e^{-t^{2}} d t
$$

Euler Characteristic

With the scale ratio $\beta=\operatorname{size}(M) / L_{c}$

$$
\mathbb{E}\{\chi\}=\left[\frac{\beta^{3}}{\sqrt{2} \pi^{2}}\left(\frac{\kappa^{2}}{\sigma^{2}}-1\right)+\frac{3 \beta^{2}}{\sqrt{2} \pi^{3 / 2}} \frac{\kappa}{\sigma}+\frac{3 \beta}{\sqrt{2} \pi}\right] e^{-\kappa^{2} / 2 \sigma^{2}}+\frac{1}{\sqrt{\pi}} \int_{\kappa / \sigma}^{\infty} e^{-t^{2}} d t
$$

