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Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

• Theory for univariate extremes

• Theory for dependent extremes based on maxima and point processes

• Theory for dependent extremes based on threshold exceedances

2/89



1 Introduction

2 Univariate Extreme-Value Theory
Maxima
Threshold exceedances
Point processes

3 Representations of dependent extremes using maxima and point processes
Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France

5 Perspectives

3/89



The origins of Extreme-Value Theory (EVT)

• A probabilistic theory with its origins in the first half of the 20th century:

• Fréchet (1927). Sur la loi de probabilité de l’écart maximum. Annales de la Société
Polonaise de Mathématique.

• Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and
smallest member of a sample. Proceedings of the Cambridge Philosophical Society.

• von Mises (1936). La distribution de la plus grande de n valeurs. Revue Mathématique
de l’Union Interbalcanique

• Gnedenko (1943). Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics.

• Strong development of multivariate and process theory since the 1970s

• Statistical methods and applications

• Often at the origin of theoretical developments
(for example, Tippett’s work for the cotton industry)

• Seminal monograph Statistics of Extremes (1958) of Gumbel

• Numerous applications since the 1980s

• Today, strong use for finance/insurance and climate/environment

• Typical goals:
• Estimate and extrapolate extreme-event probabilities
• Stochastically generate new extreme-event scenarios
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Extreme events
Extreme events are located in the upper or lower tail of the distribution:
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Without loss of generality, we focus on the extremes in the upper tail.
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Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X1,X2, . . .

Averages Sn = 1
n

∑n
i=1 Xi

Central Limit Theorem

Sn−µ
σn
→ Z ∼ N (0, 1)

Gaussian limit distribution
(Sum-stability)

Spatial extension:

Gaussian processes

Geostatistics

Extremes (maxima) Mn = maxni=1 Xi

Fisher–Tippett–Gnedenko Theorem

Mn−an
bn

→ Z ∼ GEV(ξ) (tail index ξ ∈ R)

Extreme-value limit distribution
(Max-stability)

Spatial extension:

Max-stable processes

Spatial Extreme-Value Theory
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The trinity of the three fundamental approaches
Three asymptotic approaches to study extreme events in an i.i.d. sample {Xi}:

1 Block maxima: Mn = maxni=1 Xi using blocks of size n
2 Threshold exceedances above a high threshold u: (Xi − u) | Xi ≥ u
3 Occurrence counts: N(E) = |{Xi ∈ E , i = 1, . . . , n}| for extreme events E

Asymptotic theory

For

• increasing block size n,

• for increasing threshold u, and

• for more and more extreme event sets E ,

we obtain coherent theoretical representations across the three approaches.

Maxima Exceedances Occurrences
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The maximum of a sample

For a series of independent and identically distributed (iid) random variables

Xi ∼ F , i = 1, 2, . . .

we consider the maximum
Mn =

n
max
i=1

Xi ∼ F n,

where
F n(x) = (F (x))n.
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The fundamental extreme-value limit theorem

Fisher–Tippett–Gnedenko Theorem

Let Xi , i = 1, 2, . . . iid. If deterministic normalizing sequences an (location) and
bn > 0 (scale) exist such that

Mn − an

bn

d→ Z ∼ G , n→∞, (?)

with a nondegenerate limit distribution G , then G is of one of the three types of
extreme-value distributions:

• (Reverse) Weibull: G̃(z) = exp(−(−x)−α+ ) with α > 0 (with support (−∞, 0))

• Gumbel: G̃(z) = exp(− exp(−x)) (with support R)

• Fréchet: G̃(z) = exp(−xα+ ) with α > 0 (with support (0,∞))

Remarks:

• Being of a certain type means being equal up to a location-scale transformation:
G(z) = G̃(a + bz) with some b > 0, a ∈ R. We can always choose an, bn such
that G = G̃ .

• If convergence (?) holds, we say that F is in the maximum domain of attraction
(MDA) of G .

• Equivalently to (?), we have F n(an + bnz)→ G(z), n→∞, z ∈ R.
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Sketch of the proof (1)
A key ingredient is the Extremal-Types Theorem, here copied from Embrechts,
Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko & Kolmogorov
(1954).

Extremal-Types Theorem

Let A,B,A1,A2, . . . be random variables and bn > 0, βn > 0 and an, αn ∈ R be
deterministic sequences. If the following convergence holds,

An − an

bn

d→ A, n→∞,

then the alternative convergence

An − αn

βn

d→ B, n→∞, (1)

holds if and only if

bn

βn
→ b ∈ [0,∞),

an − αn

βn
→ a ∈ R, n→∞.

If (1) holds, then B
d
= bA + a with a, b being uniquely determined. Moreover, A is

nondegenerate if and only if b > 0, and the A and B are said to belong to the same
type.
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Sketch of the proof (2)
In the following, all convergences are understood for n→∞.

1 If the convergence F n(an + bnz)→ G(z) holds, then for any t > 0,

F bntc(abntc + bbntcz)→ G(z), z ∈ R. (2)

2 Observe that

F bntc(an + bnz) = (F n(an + bnz))bntc/n → G t(z). (3)

3 Using the Extremal-Types Theorem, there exist deterministic functions γ(t) > 0
and δ(t) such that

bn

bbntc
→ γ(t),

an − abntc

bbntc
→ δ(t), t > 0.

By considering (2) and (3), we get

G t(z) = G(δ(t) + γ(t)z), t > 0.

4 A consequence of the last equality is that for s, t > 0,

γ(st) = γ(s)γ(t), δ(st) = γ(t)δ(s) + δ(t).

5 The solutions of this functional equation are given by the three distribution
functions of the reverse Weibull, Gumbel and Fréchet type.
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Generalized Extreme-Value distribution (GEV)

The Generalized Extreme-Value distributions (GEV) uses threes parameter to jointly
represent all possible limit distributions G :

G(z) = GEV(z; ξ, µ, σ) = exp

(
−
[

1 + ξ
z − µ
σ

]−1/ξ

+

)
(??)

• Shape parameter (or tail index) ξ ∈ R, determining the extremal type:
• Reverse-Weibull MDA for ξ < 0
• Gumbel MDA for ξ = 0
• Fréchet MDA for ξ > 0

• Location parameter µ ∈ R
• Scale parameter σ > 0

For ξ = 0, (??) is the limit for ξ → 0: G(z) = exp(− exp(−(z − µ)/σ)), z ∈ R.

The (...)+-operator in (??) means that the distribution G has positive density dG/dz

for values z satisfying 1 + ξ z−µ
σ

> 0

⇒ Support of the GEV: Aξ,σ,µ =


(−∞, µ− σ/ξ), ξ < 0,

(−∞,∞), ξ = 0,

(µ− σ/ξ,∞), ξ > 0.
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Illustration: GEV densities
In the MDA convergence (?), we can always choose the normalizing sequences an, bn
such that µ = 0, σ = 1, as for the probability densities shown below.

The three types have very different upper tail structure:
• Reverse-Weibull for ξ < 0: light tails with finite upper endpoint

(GEV finite upper endpoint is µ− σ/ξ)
• Gumbel for ξ = 0: exponential tail
• Fréchet for ξ > 0: power-law tails, i.e., heavy tails
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Empirical illustration

Histograms of i.i.d. samples Xi , i = 1, 2, . . . , n, with different tail index ξ.
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Examples of MDAs of common distributions:

• ξ > 0: Pareto (ξ = 1/shape), student’s t (ξ = shape)

• ξ = 0: Normal, Exponential, Gamma, Lognormal

• ξ < 0: Uniform (ξ = −1), Beta

16/89



Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with cdf F (x) = 1− exp(−x), x > 0.

The distribution F n of the maximum Mn = maxni=1 Xi , where Xi
iid∼ F , i = 1, . . . , n, is

F n(x) = (1− exp(−x))n .

Can we find an and bn such that limn→∞ F n(an + bnx) exists and is nondegenerate?

For x > − log n,

F n(log n + x) = (1− exp(−(log n + x))n =

(
1−

exp(−x)

n

)n

→ exp(− exp(−x)), n→∞

Conclusion:

• Using an = log(n) and bn = 1, we obtain
limn→∞ F n(an + bnx) = exp(− exp(−x)) for any x ∈ R.

• The exponential distribution is in the maximum domain of attraction of the
standard Gumbel distribution, i.e., the GEV with ξ = 0, µ = 0, σ = 1.
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Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:

Class of extreme-value limit distributions G = Class of max-stable distributions

Max-stable distribution
A probability distribution G is called max-stable if for any n ∈ N there exist
appropriate choices of deterministic normalizing sequences αn and βn > 0 such that

Gn(αn + βnz) = G(z), for anyn ∈ N.

This also means that the MDA limit (?) is exact (and not asymptotic) if F is
max-stable.
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Threshold exceedances in a univariate sample
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What are possible limits for threshold excesses

X − u given X > u ?
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Generalized Pareto limits for threshold exceedances

Consider iid X ,X1,X2, . . . where X ∼ F
with upper endpoint x? = sup{x ∈ R : F (x) < 1} ∈ (−∞,∞].

Pickands–Balkema–de-Haan Theorem
Suppose that Mn = max(X1, . . . ,Xn) converges to a GEV(ξ, µ, σ) distribution
according to the Fisher–Tippett–Gnedenko theorem.
Equivalently, there exists a scaling function σ(u) > 0 such that

(X − u)/σ(u) | (X > u) → Y , u → x?,

and Y follows the Generalized Pareto Distribution GPD(ξ, σGPD) given as

GPD(y ; ξ, σGPD) = Pr(Y ≤ y) = 1− (1 + ξy/σGPD)
−1/ξ
+ y > 0,

with scale parameter σGPD > 0.

• This result dates back to the 1970s.

• As before, the case ξ = 0 is interpreted as the limit for ξ → 0:

GPD(y ; 0, σGPD) = 1− exp(−y/σGPD), y > 0

(= Exponential distribution).
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Sketch of the proof
We here sketch the proof of “⇒“
(Convergence of maxima leads to convergence of threshold excesses).

1 Set un = an + bnũ for ũ chosen in the support of the GEV(ξ, µ, σ). Then,

Pr((X − un)/bn > y | X > un) =
1− F (an + bn(y + ũ))

1− F (an + bnũ)
. (4)

2 On the one hand, the MDA condition F n(an + bnz)→ G(z) implies

log F (an + bnz) ≈
1

n
log G(z), for large n.

On the other hand, since F (an + bnz) ≈ 1 as n increases, we can use the
first-order approximation log(1 + x) ≈ x for small |x |, such that

log F (an + bnz) ≈ F (an + bnz)− 1.

Combining the two yields

1− F (an + bnz) ≈ −
1

n
log G(z). (5)

3 By using the approximation (5) for the numerator and denominator of (4), we get

Pr((X−un)/bn > y | X > un)→
log G(ũ + y)

log G(ũ)
= 1−GPD(y ; ξ, σGPD), n→∞;

with σGPD = σ + ξ(ũ − µ) > 0, and we can set σ(un) = bn.
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Illustration: GPD densities

The value of the tail index ξ characterizes the shape of the distribution.
Here, σGPD is fixed to 1.
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Peaks-over-threshold stability

By analogy with max-stability of GEV limit distributions for maxima, we have
Peaks-Over-Threshold (POT) stability for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that Y ∼ GPD(ξ, σGPD). Consider a new, higher threshold ũ > 0 such that
GPD(ũ; ξ, σGPD) < 1. Then

Y − ũ | (Y > ũ) ∼ GPD(ξ, σ̃GPD), σ̃GPD = σGPD + ξũ.

Exercice: Prove this using pencil + paper by showing

1−GPD(ũ + y ; ξ, σGPD)

1−GPD(ũ; ξ, σGPD)
= 1−GPD(y ; ξ, σ̃GPD)

⇒ Application of the POT approach to a GPD yields again a GPD!

For ξ = 0, where the GPD is the exponential distribution, the POT stability is also
known as the lack-of-memory property.
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Point-process convergence
The trinity of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X1,X2, . . . of X ∼ F , the following two statements are equivalent:

1 The distribution F is in the maximum domain of attraction of the max-stable
distribution G with support Aξ,σ,µ for the normalizing sequences an ∈ R and
bn > 0.

2 For the normalizing sequences an ∈ R and bn > 0, we have the following
point-process convergence with a locally finite Poisson-process process limit:{(

i

n
,
Xi − an

bn

)
, i = 1, . . . , n

}
→ {(ti ,Pi ), i ∈ N} ∼ PPP(λ1 × Λ), n→∞,

with intensity measure λ1 × Λ where λ1 is the Lebesgue measure on (0, 1).

If 1) and 2) hold, then G(z) = exp(−Λ[z;∞)), and the exponent measure Λ defined
on Aξ,σ,µ is characterized by its tail measure

Λ[z,∞) = − log G(z) =


(

1 + ξ z−µ
σ

)−1/ξ
, ξ 6= 0

exp
(

z−µ
σ

)
, ξ = 0

, µ ∈ R, σ > 0.

Remark: Λ is singular at inf Aξ,σ,µ.
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Summary: The extreme-value trinity

We allow for affine-linear rescaling X̃i = Xi−bn
an

of the iid sample Xi , i = 1, . . . , n.

Maxima
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Pr(maxni=1 X̃i ≤ z)
→ exp (−Λ[z,∞))

Max-stable distr. (GEV)

Occurrence counts
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Pr(N(E) = k)→
exp(−(λ1 × Λ)(E))

(λ1×Λ)(E)k

k!

Poisson process

Threshold exceedances
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Pr(X̃i − u > y | X̃i > u)
→ Λ[y ,∞)/Λ[u,∞)

Gen. Pareto distr. (GPD)

Exponent measure Λ possessing asymptotic stability:
for any event E and c > 0, there are constants α(c) ∈ R, β(c) > 0 such that

c × Λ(E) = Λ

(
E − α(c)

β(c)

)
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Practical motivation for dependent extremes

Often, several variables are stochastically dependent,
for example in environmental and climatic data.

Examples:

• Different physical variables observed at the same location, such as minimum
temperature, maximum temperature, precipitation, wind speed.

• The same physical variable observed at different locations, such as precipitation
at different locations of a river catchment.

Many interesting aspects of dependent extremes:

• Aggregation of extreme observations in several components
(example: cumulated precipitation ⇒ flood risk)

• Spatial extent and temporal duration of environmental extreme events

• Reliability: simultaneous failure of several critical components
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Illustration: a bivariate sample with dependence
Scatterplot of an iid bivariate sample Xi = (Xi,1,Xi,2), i = 1, 2, . . . , n.
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A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are
structurally quite similar.

For indexing the variables of interest,

• we can either put focus on the multivariate aspect and use indices 1, . . . , d for
the d components of a random vector

(X1, . . . ,Xd )

(and we can write D = {1, . . . , d} for the domain),

• or we put focus on the process aspect (for example, when working with a random
field on a nonempty domain D ⊂ Rk ) and use notation such as

{X (s), s ∈ D}

for the whole process, or
(X (s1), . . . ,X (sd ))

for the multivariate vector of variables observed at d locations s1, . . . , sd ⊂ Rk .

When the distinction is important, we point it out explicitly (for example, for
“functional convergence” in a space of functions with continuous sample paths defined
over a compact domain D).
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Componentwise maxima of random vectors

Consider a sequence of iid random vectors

Xi = (Xi,1, . . . ,Xi,d )
d
= X ∼ FX ,

where FX is the joint distribution of the components of X :

FX (x) = FX (x1, . . . , xd ) = Pr(X1 ≤ x1, . . . ,Xd ≤ xd )

The componentwise maximum

Mn = (Mn,1, . . . ,Mn,d ) =

(
n

max
i=1

Xi,1, . . . ,
n

max
i=1

Xi,d

)
has distribution F n

X , that is, for x = (x1, . . . , xd ),

F n
X (x) = (FX (x))n = Pr(Xi,1 ≤ x1, . . . ,Xi,d ≤ xd , i = 1, . . . , n)

B The componentwise maximum Mn can be composed of values Xi,j with different
indices i .
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Illustration: bivariate componentwise block maxima
A bivariate series Xi = (Xi,1,Xi,2) (with strong cross-correlation) and its
componentwise maxima within the blocks separated by red lines. Most but not all of
the maxima occur at the same time in the two series.
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Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (d-dimensional) distribution G is called max-stable if there exist
deterministic vector sequences αn = (αn,1, . . . , αn,d ) and βn = (βn,1, . . . , βn,d ) > 0,
n ∈ N, such that

Gn(αn + βnz) = G(z), z ∈ Rd .

If all finite-dimensional distributions of a stochastic process Z = {Z(s), s ∈ D ⊂ Rk}
are max-stable, we call Z a max-stable process.

Equivalently, if X1 ∼ G , then the componentwise maximum over n iid copies of X1

satisfies
Mn −αn

βn

d
= X1, n ∈ N.

B Multivariate max-stability is stronger than max-stability of the univariate marginal
distributions.

• If Z = (Z1, . . . ,Zd ) ∼ G with Zj ∼ Gj , then the univariate marginal distributions
Gj are max-stable:

Gj(zj ) = GEV(zj ; ξj , µj , σj ) = Pr(Zj ≤ zj ) = G(∞, . . . ,∞, zj ,∞, . . . ,∞).

• Additionally, max-stability of G implies a stability property for the dependence
structure.
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Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction
If there exist deterministic normalizing vector sequences an = (an,1, . . . , an,d ) and
bn = (bn,1, . . . , bn,d ) > 0, n ∈ N, such that the following convergence holds,

Mn − an
bn

→ Z = (Z1, . . . ,Zd ) ∼ G , n→∞,

where Z has non-degenerate marginal distributions, then G is a multivariate
extreme-value distribution, that is, a multivariate max-stable distribution.

If all finite-dimensional distributions of a process X = {X (s), s ∈ D ⊂ Rk} satisfy the
above convergence, then Z = {Z(s), s ∈ D ⊂ Rk} is a max-stable process.

(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of
finite-dimensional distributions. There also exist results for convergence in spaces of
continuous functions over a compact domain D.
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Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the
marginal distributions Fj of Xj and Gj of Zj .

• Often, the unit Fréchet marginal distribution is used:

G?j (z) = GEV(z; ξ = 1, µ = 1, σ = 1) = exp

(
−

1

z

)
, z > 0.

• We can transform any continuous random variable X ∼ F towards a variable with
unit Fréchet distribution as follows: X? = − 1

log F (X )
∼ G?.

• If Xj ∼ GEV(ξ, µ, σ), then X?j =
(

1 + ξ X−µ
σ

)1/ξ
∼ G?j .

• If G is a multivariate max-stable distribution, we write G? for the corresponding
max-stable distribution with unit Fréchet margins. We call G? a simple
max-stable distribution.

We call representations simple if they are based on the marginal ?-scale.
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Simple Maximum Domain of Attraction

We use the following notation: Tξ,µ,σ(z) =
(

1 + ξ z−µ
σ

)1/ξ
.

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector X ∼ FX . The following two statements are equivalent:

1 The distribution FX is in the MDA of a multivariate max-stable distribution G .

2 The following two properties hold jointly:
1 Marginal convergence: Each component Xj is in the univariate MDA of a

GEV(ξj , µj , σj ) distribution.
2 Convergence on the standardized scale: The distribution of the marginally

standardized random vector

X? = (X?1 , . . . ,X
?
d ) ∼ FX?

satisfies
F n

X? (n z)→ G?(z), n →∞,
i.e., FX? is in the MDA of G?, where

G(z1, . . . , zd ) = G?(Tξ1,µ1,σ1
(z1), . . . ,Tξd ,µd ,σd (zd )).

With standardized marginal distributions, we can choose normalizing vector sequences
a?n = (0, . . . , 0) and b?n = (n, . . . , n).
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Some remarks about max-stable dependence

• There is no exhaustive representation of all simple max-stable distributions G?

using a finite number of parameters.

• We can write G? using the exponent function V ?,

G?(z) = exp(−V ?(z)), z > 0,

where t × V ?(tz) = V ?(z) ((−1)-homogeneity).

• We say that two variables X1 and X2 are asymptotically independent if

G(z1, z2) = G1(z1)× G2(z2),

and in this case

G?(z1, z2) = exp(−(1/z1 + 1/z2)) = exp(−1/z1)× exp(−1/z2), z1, z2 > 0.
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Example: multivariate logistic distribution

A large variety of parametric multivariate max-stable distribution has been proposed.

The multivariate logistic model was introduced by Emil J. Gumbel in 1960 and can
be defined through its exponent function

V ?(z) =
(
z
−1/α
1 + . . .+ z

−1/α
d

)α
, z > 0,

such that

G?(z1, . . . , zd ) = exp
(
−
(
z
−1/α
1 + . . .+ z

−1/α
d

)α)
, z > 0

with parameter 0 < α ≤ 1 and

• perfect dependence for α→ 0;

• independence for α = 1.
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Example: Simulations of bivariate logistic distribution

Sample size n = 500

Bivariate scatterplots show log Z? (standard Gumbel margins) with Z? ∼ G?

α = 0.1 α = 0.5 α = 0.9
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Example: Huesler–Reiss distribution

Huesler–Reiss distributions are related to multivariate Gaussian distributions.
Consider a multivariate Gaussian vector Ỹ .

Bivariate case: the simple max-stable distribution has parameter
γ12 = Var(Ỹ2 − Ỹ1) > 0 and for z1, z2 > 0,

G?(z1, z2) = exp

(
−

1

z1
Φ

(√
γ12

2
+

1
√
γ12

log
z2

z1

)
−

1

z2
Φ

(√
γ12

2
+

1
√
γ12

log
z1

z2

))
(with standard Gaussian cdf Φ)
⇒ independence for γ12 →∞, perfect dependence for γ12 → 0

The general multivariate distribution G? is parametrized by d(d − 1)/2 variogram
values γj1,j2 = Var(Ỹj2 − Ỹj1 ) for 1 ≤ j1 < j2 ≤ d .
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Example: Simulations of the Huesler–Reiss distribution

Sample size n = 500
Relatively weak dependence

log Z? (Gumbel margins) Z? (Fréchet margins)
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Example, cont’d

Sample size n = 500
Relatively strong dependence

log Z? (Gumbel margins) Z? (Fréchet margins)
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1 Introduction

2 Univariate Extreme-Value Theory
Maxima
Threshold exceedances
Point processes

3 Representations of dependent extremes using maxima and point processes
Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France

5 Perspectives
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Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies X1,X2, . . . of a random vector X = (X1, . . . ,Xd ) ∼ F , the following
two statements are equivalent:

1 The distribution F is in the multivariate MDA of the max-stable distribution G
for the normalizing sequences an ∈ Rd and bn > 0.

2 For the normalizing sequences an ∈ Rd and bn > 0, we have the following
point-process convergence with a locally finite Poisson point process limit:{

Xi − an
bn

, i = 1, . . . , n

}
→ {Pi , i ∈ N} ∼ PPP(Λ), n→∞,

with intensity measure Λ.

If 1) and 2) hold, then G(z) = exp(−V (z)) with

V (z) = Λ
(

(−∞, z]C
)
,

where the exponent measure Λ is defined on AΛ =
(
Aξ1,µ1,σ1

× . . .× Aξd ,µd ,σd

)
\u?,

with the marginal GEV parameters ξj , µj , σj , j = 1, . . . , d , where the lower endpoint

u? =
(
inf Aξ1,µ1,σ1

, . . . , inf Aξd ,µd ,σd

)
is excluded.
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Simple representation with standardized margins
Specifically, the convergence of componentwise maxima and of point patterns is
equivalent on the simple scale using standardized marginal distributions in X?.

Recall: Standardized marginal scale

• X?j = −1/ log Fj (Xj ) (or any other probability integral transform ensuring X?j ≥ 0

and x × Pr(X?j > x)→ 1 as x →∞)

• Normalizing sequences on standardized scale are an = 0 and bn = (n, . . . , n)

• GEV margins of G? are unit Fréchet G?j (zj ) = exp(−1/zj ), zj > 0 (ξj = 1,

µj = 1, σj = 1).

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set B ⊂ AΛ, the simple exponent measure Λ? satisfies

Λ(B) = Λ?(Bξ,µ,σ)

where Bξ,µ,σ =
{(

Tξ1,µ1,σ1
(x1), . . . ,Tξd ,µd ,σd (xd )

)
| (x1, . . . , xd ) ∈ B

}
. The simple

measure Λ? is defined on AΛ? = [0,∞)d \ 0 and is (−1)-homogeneous, that is, for
any Borel set B ⊂ AΛ? , we have

t × Λ?(tB) = Λ?(B), t > 0.
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Bivariate illustration of asymptotic stability
(D = {1, 2})

Simple scale Standard exponential scale
(ξ = (1, 1),µ = (1, 1),σ = (1, 1)) (ξ = (0, 0),µ = (0, 0),σ = (1, 1))

αn = (n, n), βn = (0, 0) αn = (1, 1), βn = (log n, log n)
n × Λ?(nB) = Λ?(B) n × Λ(log(n) + B) = Λ(B)
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The trinity: three classical multivariate formulations
• The trinity of the three classical limit also holds in the multivariate setting.

• For threshold exceedances, a standard approach is to condition on an exceedance
in at least one of the d components.

• To avoid technical notation, we focus on the simple setting.

Theorem
The following three convergences are equivalent:

• Point-process convergence:{
X?

i

n
, i = 1, . . . , n

}
→ {P?i , i ∈ N} ∼ PPP(Λ?), n→∞.

• Convergence of componentwise maxima:

M?
n

n
→ Z? ∼ G?, n→∞,

with G?(z) = exp(−V ?(z)) where V ?(z) = Λ?
(
[0, z]C

)
.

• Peaks-Over-Threshold convergence:

X?

u
|
(

d
max
j=1

X?j > u

)
→ Y ? ∼

Λ?( · ∩ [0, 1]C )

Λ?
(
[0, 1]C

) , u →∞.
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Remarks about the functional setting

• The trinity of limits also holds in the functional setting
(e.g., Dombry & Ribatet, 2016).

• Usually one considers X ∈ C(D) with compact domain D.

• One has to appropriately define weak convergence in a Banach function space.
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The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process {P?i , i ∈ N} with simple ((−1)-homogeneous) intensity
measure Λ? can be constructed as follows:

{P?i (s), i ∈ N} = {RiWi (s), i ∈ N}

where Ri = 1/Ui and

• 0 < U1 < U2 < .... are the points of a unit-rate Poisson process on [0,∞), and

• Wi = {Wi (s)} are iid nonnegative random functions, independent of {Ui}, with
EWi (s) = 1 and EWi (s)1+ε <∞ for some ε > 0.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process Z? can be constructed as

Z?(s) = max
i∈N

RiWi (s),

and any such construction is a simple max-stable process.
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Illustration: simple max-stable construction
• In gray, “points” P?i of the Poisson process on D = [0, 5]

• Max-stable process is the componentwise maximum (in black)
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Simulation based on the spectral representation
If it is simple to simulate from the distribution FW of the spectral process W , we can
draw samples from the simple max-stable process Z?.

Exact simulation
If P(Wj ≤ w0) = 1 for some threshold value 0 < w0 <∞, j = 1, . . . , d , then we can
perform exact simulation of Z? (even if Z?j = maxi∈N RiWij is defined as a maximum

over an infinite number of components):

1 set m = 1

2 generate Em ∼ Exp(1)

3 generate Wm = (Wm1, . . . ,Wmd )T ∼ FW

4 set Z? = (Z?1 , . . . ,Z
?
d )T with Z?j = maxi=1,...,m

Wij∑i
k=1

Ek
for j = 1, . . . , d

5 IF w0∑m
k=1

Ek
≤ minj=1,...,d Z?j RETURN Z?

ELSE set m = m + 1 and GO TO 2

Remarks:

• If the distribution of Wj is not finitely bounded, we can fix w0 such that
P(Wj > y0) becomes very small and perform approximation simulation.

• Even with unbounded Wj , exact simulation remains possible for many models
using different algorithms (see the review of Oesting, Strokorb, 2022).
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Example: Log-Gaussian spectral processes

A possible construction uses a centered Gaussian process W̃ (s) with variance
function σ2(s) and sets

W (s) = exp(W̃ (s)− σ2(s)/2)

⇒ A class of popular max-stable models:

• Multivariate: Huesler–Reiss distributions

• Spatial: Brown–Resnick processes

Remark: The distribution of the simple max-stable process Z? = {Z?(s), s ∈ D}
depends only on the variogram

γ(s1, s2) = Var(W̃ (s2)− W̃ (s1)), s1, s2 ∈ D.
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Illustration: Simulation of Brown–Resnick processes

Two realisation of a spatial Brown-Resnick process
(obtained using the rmaxstab function of the SpatialExtremes package)
Simulation on a grid 20× 20 (such that d = 400) in the square [0, 10]2.

lllustration: process log(Z?(s)) (with standard Gumbel margins)
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Illustration: Spatial co-occurrence of exceedances

Original spatial field Excursion set above a high threshold

60/89



Assessing co-occurrences of threshold exceedances

Threshold exceedances can occur simultaneously,

• in different variables,

• at nearby locations,

• at close time steps.

Do co-occurrences happen by chance (independence),
or are they correlated in some way?

A simple and flexible exploratory approach

Idea: Study pairwise conditional co-occurrence probabilities given as

Pr(X2 > u | X1 > u) =
Pr(X1 > u, X2 > u)

Pr(X1 > u)
,

and assess how they change with increasing u and for different pairs,
for instance with respect to temporal lag or spatial distance.
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Tail correlation coefficient

Consider a bivariate random vector (X1,X2) with X1 ∼ F1 and X2 ∼ F2.

Tail correlation
Consider the conditional probability

χ(u) = Pr(F2(X2) > u | F1(X1) > u) =
Pr(F2(X2) > u,F1(X1) > u)

Pr(F1(X1) > u)
, u ∈ (0, 1).

We define the following limit (if it exists):

χ = lim
u→1

χ(u) ∈ [0, 1]

The coefficient χ symmetric with respect to X1 and X2 and is known as χ-measure or
tail correlation. We say that

• X1 and X2 are asymptotically dependent if χ > 0;

• X1 and X2 are asymptotically independent if χ = 0.
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Link between tail correlation and max-stability
We have

χ = lim
z→∞

Pr(X?2 > z | X?1 > z) = lim
z→∞

Pr(X?1 > z,X?2 > z)

Pr(X?1 > z)
(?)

Assume that (X1,X2) is in the MDA of G . The bivariate max-stable convergence

F(X?1 ,X
?
2 )(nz, nz)n → G?(z, z), z > 0,

is equivalent to

1− F(X?1 ,X
?
2 )(nz, nz) ≈ − log G?(nz, nz), for large n.

By using

Pr(X?1 > z,X?2 > z) = (1− FX?1
(z)) + (1− FX?2

(z))− (1− F(X?1 ,X
?
2 )(z, z)),

and − log G?(nz, nz) = V?(1,1)
nz

and 1− G?j (nz) ≈ 1/(nz) in (?), we obtain

χ = 2− V ?(1, 1).

Remark: asymptotic independence corresponds to classical independence in the
max-stable limit distribution. We have χ = 0 if and only if V ?(1, 1) = 2, and in this
case V ?(z1, z2) = 1/z1 + 1/z2 for z1, z2 > 0, and G?(z1, z2) = G?1 (z1)× G?2 (z2).
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Illustration: empirical tail correlation
Data setting: n = 200, u = 0.9.
Blue points: exceedances of empirical distribution function F̂1(X1) above u.

Red points: exceedances of F̂2(X2) above u given that F̂1(X1) is above u.
Empirical tail correlation: χ̂(u) = 6

20
= 0.3.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

0 1 2 3 4

0.
0

1.
0

2.
0

3.
0

X1

X
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

64/89



Tail autocorrelation function (Extremogram)

Consider X (s) ∼ F with index s ∈ Rk .

What is the tail correlation at a given distance h = ∆s ≥ 0?

For h ≥ 0, we consider the conditional exceedance probability

χ(h; u) = Pr(F (X (s + h)) > u | F (X (s)) > u) =
Pr(F (X (s + h)) > u,F (X (s)) > u)

Pr(F (X (s)) > u)
,

for u ∈ (0, 1).

We define the tail autocorrelation function as the limit (if it exists)

χ(h) = lim
u→1

χ(h; u) ∈ [0, 1].

• By definition, χ(0) = 1.

• Usually, χ(h) decreases as ‖h‖ increases.

• χ(h) is also called auto-tail dependence function or extremogram.
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Illustration: Empirical (temporal) extremogram
Top row: temporal independence in X (t); bottom row: asymptotic dependence
Left column: u = 0.95; right column: u = 0.99
Dashed red line corresponds to theoretical χ(h; u) for independence.
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Summary measures for more than two variables
Consider d random variables X1,X2, . . . ,Xd with d ≥ 2 and Xj ∼ Fj .

Extremal coefficient (maxima)

The following limit (if it exists) is called extremal coefficient:

θd = lim
u→∞

u × Pr

(
max

j=1,...,d
X?j > u

)
• θd = V (1, . . . , 1)

• θ2 = 2− χ.

• Interpretation: d/θd = average cluster size of jointly extreme events

• With MDA convergence, we have G?(z?, . . . , z?) = exp(−θd/z?), z? > 0.

Tail dependence coefficient (minima)

The following limit (if it exists) is called tail dependence coefficient:

λd = lim
u→∞

Pr

(
min

j=1,...,d
X?j > u | X?1 > u

)
= lim

u→∞
u × Pr

(
min

j=1,...,d
X?j > u

)
• For d = 2, we have λ2 = χ.

• Extremal coefficients and tail dependence coefficients are linked through
inclusion-exclusion formulas using coefficients for d̃ = 2, . . . , d .
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So far...

• Summary measures for co-occurrences of threshold exceedances

• Focus on minima and maxima of the components of X?

Next...

• More flexibility through more general risk functionals

• Generative and parametric models, not only summaries
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Multivariate and functional threshold exceedances

Consider x ∈ RD for a compact domain D ⊂ Rk with |D| > 1.
Note: for a vector x = (x1, . . . , xd ), we can set D = {1, . . . , d}.

No unique definition of threshold exceedances ⇒ Use a risk functional r

Extreme event occurs if r(x) > u with high threshold u

Bivariate illustrations:

Maximum Average Fixed component
r(x1, x2) = max(x1, x2) r(x1, x2) = x1 + x2 r(x1, x2) = x1
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Many relevant choices for risk functionals
To formulate asymptotic theory,
we use continuous homogeneous risk functionals

r : [0,∞)D → [0,∞), r(t × x) = t × r(x)

and we apply r on the simple scale.

We further assume continuous realizations: x ∈ C(D).

There is also notation ` (for loss) instead of r (for risk).

Examples for D = {1, 2, . . . , d}

• Minimum: r(x1, . . . , xd ) = mind
j=1 xj

• Maximum: r(x1, . . . , xd ) = maxdj=1 xj

• kth order statistics: r(x1, . . . , xd ) = kth smallest value among x1, . . . , xd

• Specific component: r(x1, . . . , xd ) = xj0

• Arithmetic average: r(x1, . . . , xd ) = 1
d

∑d
j=1 xj

• Geometric average r(x1, . . . , xd ) =
(∏d

j=1 xj

)1/d

• Any norm, such as r(x1, . . . , xd ) =
(∑d

j=1 x
p
j

)1/p
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Comparison of arithmetic and geometric average

Arithmetic average:

r(x1, . . . , xd ) =
1

d

d∑
j=1

xj

Geometric average:

r(x1, . . . , xd ) =

 d∏
j=1

xj

1/d

• Constant values x1 = . . . = xd ⇒ Geometric = Arithmetic average

• Stronger variability in values xj leads to relatively lower Geometric average
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How to standardize marginal distributions
(recall + extension)

Given Xj ∼ Fj with continuous distribution function Fj , we apply a probability integral
transform to a standardized scale X?j satisfying

• X?j ≥ 0, and

• x × Pr(X?j > x)→ 1 as x →∞, which means Pr(X?j > x) ≈ 1/x for large x

Two common choices

• Unit Fréchet scale: X?j = − 1
log

F (j (Xj ))

(makes sense when working with maxima since the unit Fréchet is a GEV)

• Standard Pareto scale: X?j = 1/(1− Fj (Xj ))

(makes sense when working with exceedances since the standard Pareto is a GPD)

Interpretation of X?j as the (approximate) return period of Xj :

for an independent copy X j of Xj , we get

Pr(X j > Xj | Xj ) ≈
1

X?j
for relatively large Xj

(Note: If Pr(A) = 1/T , then the event A has a return period of T time units)
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Limits conditional to risk exceedances r(X ) > u

r -Pareto limit processes (Dombry & Ribatet 2015)

Consider a random element X = {X (s), s ∈ D} ⊂ C(D) with compact domain D.

• If we have the following (weak) convergence in C(D),

X?

u
| (r(X?) > u) → Yr , u →∞,

then Yr is an r-Pareto process,
satisfying Peaks-Over-Threshold stability:

Yr

u
| (r(Yr ) > u)

d
= Yr , for any u > 1.

• r -Pareto processes are characterized by a scale-profile decomposition:

Yr = R × V , R = r(Yr ) ∼ standard Pareto, V =
Yr

r(Yr )
, R ⊥ V

⇒ Above high thresholds u, scale r(X?) and profile X?/r(X?) become independent!
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Link to other limits

• Trinity of limits:

Convergence of componentwise maxima
⇔

Point-process convergence
⇔

r-Pareto convergence for r = sup

• r -Pareto convergence for sup ⇒ r -Pareto convergence for all r

• The probability measure of the r-Pareto process Yr is

Yr ∼
Λ? ( · ∩ Ar )

Λ? (Ar )
with Ar = {y ∈ C(D) | r(y) ≥ 1}

• Consider the simple point-process limit {P?i , i ∈ N}

⇒ Construction of r-Pareto processes =̂ Extraction of r-exceedances:

P?i | (r(P?i ) > 1)
d
= Yr
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Illustration: Simulation of r -Pareto processes

• Same realizations of the Poisson point process in all three displays

• Colors correspond to 3 most extreme risks for different risk functionals r

• Illustrations are on the log((·)?)-scale (Gumbel scale)

r = Value at fixed location r = Geometric Average r = Arithmetic Average
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Example: Geometric average risk for Brown–Resnick
models

The popular Huesler–Reiss and Brown–Resnick models have log-Gaussian profile
processes V for r chosen as the geometric average.

This is very convenient for statistical methods!

Recall: Poisson process has construction {P?i (s)} = {Ri exp(W̃i (s)− σ2(s))} with a

centered Gaussian process W̃ with variance function σ2(s)

Log-Gaussian profile processes for r = Geometric average

Given the Pareto process Yr = R × V , we have

log V (s)
d
= W̃ (s)−W − const(s; Γ)

with

• a centered Gaussian process W̃ = {W̃ (s), s ∈ D} and its spatial average W ,

• a constant const(s; Γ), explicit in terms of the semivariogram matrix

Γ = {γ(s1, s2), s1, s2 ∈ D},

of W̃ .

(Result follows from Engelke et al. 2012; Dombry et al. 2016; Engelke et al. 2019)
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Semivariograms for log-Gaussian profile processes

Recall: The log-profile process is

log V (s) = W̃ (s)−W − const(s; Γ)

Same semivariograms of the log-profile log V and the original Gaussian process W̃ !

γlog V (s1, s2) =
1

2
V [log V (s2)− log V (s1)] =

1

2
V
[
W̃ (s2)− W̃ (s1)

]
= γW̃ (s1, s2)

⇒ Classical variogram analysis becomes possible for log V !
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Gridded temperature reanalysis data

• Daily average temperature reanalysis of Météo France
(SAFRAN model at 8km resolution)

• Study period 1991–2020

• Focus on summer temperatures (June-September)

Modeling approach

• Marginal transformation to standard Pareto

• We fit separate r -Pareto models for separate administrative regions

• Daily risk exceedances using Geometric Average of return periods

• Temporal declustering with runs method for the risk series r(X?
t )

• Maximum likelihood using log V with a stable covariance function in W̃
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Study domain: 22 French administrative regions
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Results: Marginal GPD parameters

Scale σGP(s) Shape ξ(s)
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Results: Estimated extremal variograms

Based on the stable covariance function

Cov(Distance) = SD2 × exp
(
−(Distance/Scale)Shape

)
(for Distance = ‖∆s‖ = ‖s2 − s1‖)

and maximum likelihood estimation using observations of log V
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Results: Estimated tail correlations

χ(s, s+∆s) = lim
u→∞

Pr(XP(s+∆s) > u | XP(s) > u) = 2
(

1− Φ
(√

(γ(s, s + ∆s)
))
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Results: Empirical/parametric extremal variograms

• Empirical (in dashed lines) and fitted parametric variograms
B Parametric estimates exploit also the Gaussian mean const(s; Γ)

• Generally satisfactory fit

• During extreme heat days, stronger spatial variability in the Southern regions

North South Atlantic Coast
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Statistical aspects of extreme-value analysis

In practice, we typically have observations of a sample X1, . . . ,Xn with n fixed.

• Most approaches exploit one of three classical representations:
block maxima; threshold exceedances; point patterns.

• Peaks-over-threshold methods offer high flexibility, especially by using risk
functionals for dependent extremes.

• We assume that extreme-value limits provide a good approximation for large n or
high threshold u.

• Bias-variance tradeoff in statistical estimation:

Higher threshold or Larger block ⇔ Less bias but higher variance

• Rough distinction between likelihood-based (parametric) approaches and other
“semi-parametric” approaches

• Likelihood approaches for dependent extremes usually require calculating Λ(Ar )
for some risk region Ar , which can be computationally very costly, or even
prohibitive if |D| is large.
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Important topics in current extreme-value research

Types of extreme events:

• Application of risk functionals r directly to X and not to standardized X?

• Improved analysis of nonstationary extremes, especially for applications to
climate change

• Compound extremes (in the climate and risk literature)

• Aggregation of not necessarily extreme components leads to extreme impacts

• Example: Persistence of relatively high temperatures and low precipitation leads to
extreme drought conditions

• Subasymptotic extremal dependence that is not stable at observed levels

⇒ Non-asymptotic representations and statistical garantuees?

Methods and algorithms:

• Machine Learning for extreme events

• Scalability of algorithms to large datasets, such as climate-model simulations
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Some literature for further reading

Theory and probabilistic foundation:

• Resnick (1987). Extreme Values, Regular Variation and Point Processes.

Statistical modeling:

• Coles (2001). An introduction to statistical modeling of extreme values.

Mix of both:

• Embrechts, Klüppelberg, Mikosch (1997). Modelling extremal events: for
insurance and finance.

• de Haan, Ferreira (2006). Extreme-value theory: an introduction.

A review of available software (R-based):

• Belzile, Dutang, Northrop, Opitz (2023+). A modeler’s guide to extreme-value
software. https://arxiv.org/abs/2205.07714
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