An introduction to extreme-value theory

Thomas Opitz
BioSP, INRAE, Avignon

Short course at the Stochastic Geometry Days

Dijon, 12-13 June, 2023

Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

- Theory for univariate extremes
- Theory for dependent extremes based on maxima and point processes
- Theory for dependent extremes based on threshold exceedances

(1) Introduction

(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

The origins of Extreme-Value Theory (EVT)

- A probabilistic theory with its origins in the first half of the 20th century:
- Fréchet (1927). Sur la loi de probabilité de l'écart maximum. Annales de la Société Polonaise de Mathématique.
- Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proceedings of the Cambridge Philosophical Society.
- von Mises (1936). La distribution de la plus grande de n valeurs. Revue Mathématique de l'Union Interbalcanique
- Gnedenko (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of Mathematics.
- Strong development of multivariate and process theory since the 1970s
- Statistical methods and applications
- Often at the origin of theoretical developments (for example, Tippett's work for the cotton industry)
- Seminal monograph Statistics of Extremes (1958) of Gumbel
- Numerous applications since the 1980s
- Today, strong use for finance/insurance and climate/environment
- Typical goals:
- Estimate and extrapolate extreme-event probabilities
- Stochastically generate new extreme-event scenarios

Extreme events

Extreme events are located in the upper or lower tail of the distribution:

Without loss of generality, we focus on the extremes in the upper tail.

Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X_{1}, X_{2}, \ldots

Averages $\bar{S}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Central Limit Theorem

$$
\frac{\bar{S}_{n}-\mu}{\sigma_{n}} \rightarrow Z \sim \mathcal{N}(0,1)
$$

Gaussian limit distribution (Sum-stability)

Spatial extension:
Gaussian processes
Geostatistics

Extremes (maxima) $M_{n}=\max _{i=1}^{n} X_{i}$

Fisher-Tippett-Gnedenko Theorem

$$
\left.\frac{M_{n}-a_{n}}{b_{n}} \rightarrow Z \sim \operatorname{GEV}(\xi) \text { (tail index } \xi \in \mathbb{R}\right)
$$

Extreme-value limit distribution (Max-stability)

Spatial extension:
Max-stable processes
Spatial Extreme-Value Theory

The trinity of the three fundamental approaches
Three asymptotic approaches to study extreme events in an i.i.d. sample $\left\{X_{i}\right\}$:
(1) Block maxima: $M_{n}=\max _{i=1}^{n} X_{i}$ using blocks of size n
(2) Threshold exceedances above a high threshold $u:\left(X_{i}-u\right) \mid X_{i} \geq u$
(3) Occurrence counts: $N(E)=\left|\left\{X_{i} \in E, i=1, \ldots, n\right\}\right|$ for extreme events E

Asymptotic theory

For

- increasing block size n,
- for increasing threshold u, and
- for more and more extreme event sets E,
we obtain coherent theoretical representations across the three approaches.

Maxima

Exceedances

Occurrences

(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

The maximum of a sample

For a series of independent and identically distributed (iid) random variables

$$
X_{i} \sim F, \quad i=1,2, \ldots
$$

we consider the maximum

$$
M_{n}=\max _{i=1}^{n} X_{i} \sim F^{n}
$$

where

$$
F^{n}(x)=(F(x))^{n} .
$$

The fundamental extreme-value limit theorem

Fisher-Tippett-Gnedenko Theorem

Let $X_{i}, i=1,2, \ldots$ iid. If deterministic normalizing sequences a_{n} (location) and $b_{n}>0$ (scale) exist such that

$$
\frac{M_{n}-a_{n}}{b_{n}} \xrightarrow{d} Z \sim G, \quad n \rightarrow \infty, \quad(\star)
$$

with a nondegenerate limit distribution G, then G is of one of the three types of extreme-value distributions:

- (Reverse) Weibull: $\tilde{G}(z)=\exp \left(-(-x)_{+}^{-\alpha}\right)$ with $\alpha>0$ (with support $(-\infty, 0)$)
- Gumbel: $\tilde{G}(z)=\exp (-\exp (-x))$ (with support $\mathbb{R})$
- Fréchet: $\tilde{G}(z)=\exp \left(-x_{+}^{\alpha}\right)$ with $\alpha>0$ (with support $(0, \infty)$)

Remarks:

- Being of a certain type means being equal up to a location-scale transformation: $G(z)=\tilde{G}(a+b z)$ with some $b>0, a \in \mathbb{R}$. We can always choose a_{n}, b_{n} such that $G=\tilde{G}$.
- If convergence (\star) holds, we say that F is in the maximum domain of attraction (MDA) of G.
- Equivalently to (\star), we have $F^{n}\left(a_{n}+b_{n} z\right) \rightarrow G(z), n \rightarrow \infty, z \in \mathbb{R}$.

Sketch of the proof (1)

A key ingredient is the Extremal-Types Theorem, here copied from Embrechts, Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko \& Kolmogorov (1954).

Extremal-Types Theorem

Let $A, B, A_{1}, A_{2}, \ldots$ be random variables and $b_{n}>0, \beta_{n}>0$ and $a_{n}, \alpha_{n} \in \mathbb{R}$ be deterministic sequences. If the following convergence holds,

$$
\frac{A_{n}-a_{n}}{b_{n}} \xrightarrow{d} A, \quad n \rightarrow \infty,
$$

then the alternative convergence

$$
\begin{equation*}
\frac{A_{n}-\alpha_{n}}{\beta_{n}} \xrightarrow{d} B, \quad n \rightarrow \infty, \tag{1}
\end{equation*}
$$

holds if and only if

$$
\frac{b_{n}}{\beta_{n}} \rightarrow b \in[0, \infty), \quad \frac{a_{n}-\alpha_{n}}{\beta_{n}} \rightarrow a \in \mathbb{R}, \quad n \rightarrow \infty .
$$

If (1) holds, then $B \stackrel{d}{=} b A+a$ with a, b being uniquely determined. Moreover, A is nondegenerate if and only if $b>0$, and the A and B are said to belong to the same type.

Sketch of the proof (2)

In the following, all convergences are understood for $n \rightarrow \infty$.
(1) If the convergence $F^{n}\left(a_{n}+b_{n} z\right) \rightarrow G(z)$ holds, then for any $t>0$,

$$
\begin{equation*}
F^{\lfloor n t\rfloor}\left(a_{\lfloor n t\rfloor}+b_{\lfloor n t\rfloor} z\right) \rightarrow G(z), \quad z \in \mathbb{R} . \tag{2}
\end{equation*}
$$

(2) Observe that

$$
\begin{equation*}
F^{\lfloor n t\rfloor}\left(a_{n}+b_{n} z\right)=\left(F^{n}\left(a_{n}+b_{n} z\right)\right)^{\lfloor n t\rfloor / n} \rightarrow G^{t}(z) . \tag{3}
\end{equation*}
$$

(3) Using the Extremal-Types Theorem, there exist deterministic functions $\gamma(t)>0$ and $\delta(t)$ such that

$$
\frac{b_{n}}{b_{\lfloor n t\rfloor}} \rightarrow \gamma(t), \quad \frac{a_{n}-a_{\lfloor n t\rfloor}}{b_{\lfloor n t\rfloor}} \rightarrow \delta(t), \quad t>0 .
$$

By considering (2) and (3), we get

$$
G^{t}(z)=G(\delta(t)+\gamma(t) z), \quad t>0 .
$$

(4) A consequence of the last equality is that for $s, t>0$,

$$
\gamma(s t)=\gamma(s) \gamma(t), \quad \delta(s t)=\gamma(t) \delta(s)+\delta(t)
$$

© The solutions of this functional equation are given by the three distribution functions of the reverse Weibull, Gumbel and Fréchet type.

Generalized Extreme-Value distribution (GEV)

The Generalized Extreme-Value distributions (GEV) uses threes parameter to jointly represent all possible limit distributions G :

$$
G(z)=\operatorname{GEV}(z ; \xi, \mu, \sigma)=\exp \left(-\left[1+\xi \frac{z-\mu}{\sigma}\right]_{+}^{-1 / \xi}\right) \quad(\star \star)
$$

- Shape parameter (or tail index) $\xi \in \mathbb{R}$, determining the extremal type:
- Reverse-Weibull MDA for $\xi<0$
- Gumbel MDA for $\xi=0$
- Fréchet MDA for $\xi>0$
- Location parameter $\mu \in \mathbb{R}$
- Scale parameter $\sigma>0$

For $\xi=0,(\star \star)$ is the limit for $\xi \rightarrow 0: G(z)=\exp (-\exp (-(z-\mu) / \sigma)), z \in \mathbb{R}$.
The $(\ldots)_{+}$-operator in ($\star \star$) means that the distribution G has positive density $d G / d z$ for values z satisfying $1+\xi \frac{z-\mu}{\sigma}>0$
\Rightarrow Support of the GEV: $A_{\xi, \sigma, \mu}= \begin{cases}(-\infty, \mu-\sigma / \xi), & \xi<0, \\ (-\infty, \infty), & \xi=0, \\ (\mu-\sigma / \xi, \infty), & \xi>0 .\end{cases}$

Illustration: GEV densities

In the MDA convergence (\star), we can always choose the normalizing sequences a_{n}, b_{n} such that $\mu=0, \sigma=1$, as for the probability densities shown below.
The three types have very different upper tail structure:

- Reverse-Weibull for $\xi<0$: light tails with finite upper endpoint (GEV finite upper endpoint is $\mu-\sigma / \xi$)
- Gumbel for $\xi=0$: exponential tail
- Fréchet for $\xi>0$: power-law tails, i.e., heavy tails

Empirical illustration

Histograms of i.i.d. samples $X_{i}, i=1,2, \ldots, n$, with different tail index ξ.

Examples of MDAs of common distributions:

- $\xi>0$: Pareto ($\xi=1 /$ shape $)$, student's $t(\xi=$ shape $)$
- $\xi=0$: Normal, Exponential, Gamma, Lognormal
- $\xi<0$: Uniform $(\xi=-1)$, Beta

Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with $\operatorname{cdf} F(x)=1-\exp (-x), x>0$.
The distribution F^{n} of the maximum $M_{n}=\max _{i=1}^{n} X_{i}$, where $X_{i} \stackrel{i i d}{\sim} F, i=1, \ldots, n$, is

$$
F^{n}(x)=(1-\exp (-x))^{n} .
$$

Can we find a_{n} and b_{n} such that $\lim _{n \rightarrow \infty} F^{n}\left(a_{n}+b_{n} x\right)$ exists and is nondegenerate?
For $x>-\log n$,

$$
\begin{aligned}
F^{n}(\log n+x) & =\left(1-\exp (-(\log n+x))^{n}=\left(1-\frac{\exp (-x)}{n}\right)^{n}\right. \\
& \rightarrow \exp (-\exp (-x)), \quad n \rightarrow \infty
\end{aligned}
$$

Conclusion:

- Using $a_{n}=\log (n)$ and $b_{n}=1$, we obtain $\lim _{n \rightarrow \infty} F^{n}\left(a_{n}+b_{n} x\right)=\exp (-\exp (-x))$ for any $x \in \mathbb{R}$.
- The exponential distribution is in the maximum domain of attraction of the standard Gumbel distribution, i.e., the GEV with $\xi=0, \mu=0, \sigma=1$.

Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:
Class of extreme-value limit distributions $G=$ Class of max-stable distributions

Max-stable distribution

A probability distribution G is called max-stable if for any $n \in \mathbb{N}$ there exist appropriate choices of deterministic normalizing sequences α_{n} and $\beta_{n}>0$ such that

$$
G^{n}\left(\alpha_{n}+\beta_{n} z\right)=G(z), \quad \text { for any } n \in \mathbb{N} .
$$

This also means that the MDA limit (\star) is exact (and not asymptotic) if F is max-stable.
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Threshold exceedances in a univariate sample

What are possible limits for threshold excesses

$$
X-u \quad \text { given } \quad X>u \quad ?
$$

Generalized Pareto limits for threshold exceedances

Consider iid X, X_{1}, X_{2}, \ldots where $X \sim F$ with upper endpoint $x^{\star}=\sup \{x \in \mathbb{R}: F(x)<1\} \in(-\infty, \infty]$.

Pickands-Balkema-de-Haan Theorem

Suppose that $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$ converges to a $\operatorname{GEV}(\xi, \mu, \sigma)$ distribution according to the Fisher-Tippett-Gnedenko theorem.
Equivalently, there exists a scaling function $\sigma(u)>0$ such that

$$
(X-u) / \sigma(u) \mid(X>u) \quad \rightarrow \quad Y, \quad u \rightarrow x^{\star}
$$

and Y follows the Generalized Pareto Distribution $\operatorname{GPD}\left(\xi, \sigma_{G P D}\right)$ given as

$$
\operatorname{GPD}\left(y ; \xi, \sigma_{G P D}\right)=\operatorname{Pr}(Y \leq y)=1-\left(1+\xi y / \sigma_{G P D}\right)_{+}^{-1 / \xi} \quad y>0,
$$

with scale parameter $\sigma_{G P D}>0$.

- This result dates back to the 1970s.
- As before, the case $\xi=0$ is interpreted as the limit for $\xi \rightarrow 0$:

$$
\operatorname{GPD}\left(y ; 0, \sigma_{G P D}\right)=1-\exp \left(-y / \sigma_{G P D}\right), \quad y>0
$$

(= Exponential distribution).

Sketch of the proof

We here sketch the proof of " \Rightarrow "
(Convergence of maxima leads to convergence of threshold excesses).
(1) Set $u_{n}=a_{n}+b_{n} \tilde{u}$ for \tilde{u} chosen in the support of the $\operatorname{GEV}(\xi, \mu, \sigma)$. Then,

$$
\begin{equation*}
\operatorname{Pr}\left(\left(X-u_{n}\right) / b_{n}>y \mid X>u_{n}\right)=\frac{1-F\left(a_{n}+b_{n}(y+\tilde{u})\right)}{1-F\left(a_{n}+b_{n} \tilde{u}\right)} . \tag{4}
\end{equation*}
$$

(2) On the one hand, the MDA condition $F^{n}\left(a_{n}+b_{n} z\right) \rightarrow G(z)$ implies

$$
\log F\left(a_{n}+b_{n} z\right) \approx \frac{1}{n} \log G(z), \quad \text { for large } n .
$$

On the other hand, since $F\left(a_{n}+b_{n} z\right) \approx 1$ as n increases, we can use the first-order approximation $\log (1+x) \approx x$ for small $|x|$, such that

$$
\log F\left(a_{n}+b_{n} z\right) \approx F\left(a_{n}+b_{n} z\right)-1
$$

Combining the two yields

$$
\begin{equation*}
1-F\left(a_{n}+b_{n} z\right) \approx-\frac{1}{n} \log G(z) \tag{5}
\end{equation*}
$$

(3) By using the approximation (5) for the numerator and denominator of (4), we get

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X-u_{n}\right) / b_{n}>y \mid X>u_{n}\right) \rightarrow \frac{\log G(\tilde{u}+y)}{\log G(\tilde{u})}=1-\operatorname{GPD}\left(y ; \xi, \sigma_{G P D}\right), \quad n \rightarrow \infty ; \\
& \text { with } \sigma_{G P D}=\sigma+\xi(\tilde{u}-\mu)>0, \text { and we can set } \sigma\left(u_{n}\right)=b_{n}
\end{aligned}
$$

Illustration: GPD densities

The value of the tail index ξ characterizes the shape of the distribution. Here, $\sigma_{G P D}$ is fixed to 1 .

Peaks-over-threshold stability

By analogy with max-stability of GEV limit distributions for maxima, we have Peaks-Over-Threshold (POT) stability for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that $Y \sim \operatorname{GPD}\left(\xi, \sigma_{G P D}\right)$. Consider a new, higher threshold $\tilde{u}>0$ such that $\operatorname{GPD}\left(\tilde{u} ; \xi, \sigma_{G P D}\right)<1$. Then

$$
Y-\tilde{u} \mid(Y>\tilde{u}) \sim \operatorname{GPD}\left(\xi, \tilde{\sigma}_{G P D}\right), \quad \tilde{\sigma}_{G P D}=\sigma_{G P D}+\xi \tilde{u}
$$

Exercice: Prove this using pencil + paper by showing

$$
\frac{1-\operatorname{GPD}\left(\tilde{u}+y ; \xi, \sigma_{G P D}\right)}{1-\operatorname{GPD}\left(\tilde{u} ; \xi, \sigma_{G P D}\right)}=1-\operatorname{GPD}\left(y ; \xi, \tilde{\sigma}_{G P D}\right)
$$

\Rightarrow Application of the POT approach to a GPD yields again a GPD!
For $\xi=0$, where the GPD is the exponential distribution, the POT stability is also known as the lack-of-memory property.
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Point-process convergence

The trinity of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X_{1}, X_{2}, \ldots of $X \sim F$, the following two statements are equivalent:
(1) The distribution F is in the maximum domain of attraction of the max-stable distribution G with support $A_{\xi, \sigma, \mu}$ for the normalizing sequences $a_{n} \in \mathbb{R}$ and $b_{n}>0$.
(2) For the normalizing sequences $a_{n} \in \mathbb{R}$ and $b_{n}>0$, we have the following point-process convergence with a locally finite Poisson-process process limit:

$$
\left\{\left(\frac{i}{n}, \frac{X_{i}-a_{n}}{b_{n}}\right), i=1, \ldots, n\right\} \rightarrow\left\{\left(t_{i}, P_{i}\right), i \in \mathbb{N}\right\} \sim \operatorname{PPP}\left(\lambda_{1} \times \Lambda\right), \quad n \rightarrow \infty
$$

with intensity measure $\lambda_{1} \times \Lambda$ where λ_{1} is the Lebesgue measure on $(0,1)$.
If 1) and 2) hold, then $G(z)=\exp (-\Lambda[z ; \infty))$, and the exponent measure Λ defined on $A_{\xi, \sigma, \mu}$ is characterized by its tail measure

$$
\Lambda[z, \infty)=-\log G(z)=\left\{\begin{array}{ll}
\left(1+\xi \frac{z-\mu}{\sigma}\right)^{-1 / \xi}, & \xi \neq 0 \\
\exp \left(\frac{z-\mu}{\sigma}\right), & \xi=0
\end{array}, \quad \mu \in \mathbb{R}, \sigma>0\right.
$$

Remark: \wedge is singular at $\inf A_{\xi, \sigma, \mu}$.

Summary: The extreme-value trinity

 We allow for affine-linear rescaling $\tilde{X}_{i}=\frac{X_{i}-b_{n}}{a_{n}}$ of the iid sample $X_{i}, i=1, \ldots, n$.
Maxima

$\operatorname{Pr}\left(\max _{i=1}^{n} \tilde{X}_{i} \leq z\right)$
$\rightarrow \exp (-\Lambda[z, \infty))$
Max-stable distr. (GEV)

Occurrence counts

$\operatorname{Pr}(N(E)=k) \rightarrow$ $\exp \left(-\left(\lambda_{1} \times \Lambda\right)(E)\right) \frac{\left(\lambda_{1} \times \Lambda\right)(E)^{k}}{k!}$
Poisson process

Threshold exceedances

$\operatorname{Pr}\left(\tilde{X}_{i}-u>y \mid \tilde{X}_{i}>u\right)$
$\rightarrow \Lambda[y, \infty) / \Lambda[u, \infty)$
Gen. Pareto distr. (GPD)

Exponent measure Λ possessing asymptotic stability:
for any event E and $c>0$, there are constants $\alpha(c) \in \mathbb{R}, \beta(c)>0$ such that

$$
c \times \Lambda(E)=\Lambda\left(\frac{E-\alpha(c)}{\beta(c)}\right)
$$

(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Practical motivation for dependent extremes

Often, several variables are stochastically dependent, for example in environmental and climatic data.

Examples:

- Different physical variables observed at the same location, such as minimum temperature, maximum temperature, precipitation, wind speed.
- The same physical variable observed at different locations, such as precipitation at different locations of a river catchment.

Many interesting aspects of dependent extremes:

- Aggregation of extreme observations in several components (example: cumulated precipitation \Rightarrow flood risk)
- Spatial extent and temporal duration of environmental extreme events
- Reliability: simultaneous failure of several critical components

Illustration: a bivariate sample with dependence Scatterplot of an iid bivariate sample $\boldsymbol{X}_{i}=\left(X_{i, 1}, X_{i, 2}\right), i=1,2, \ldots, n$.

A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are structurally quite similar.

For indexing the variables of interest,

- we can either put focus on the multivariate aspect and use indices $1, \ldots, d$ for the d components of a random vector

$$
\left(X_{1}, \ldots, X_{d}\right)
$$

(and we can write $D=\{1, \ldots, d\}$ for the domain),

- or we put focus on the process aspect (for example, when working with a random field on a nonempty domain $D \subset \mathbb{R}^{k}$) and use notation such as

$$
\{X(s), s \in D\}
$$

for the whole process, or

$$
\left(X\left(s_{1}\right), \ldots, X\left(s_{d}\right)\right)
$$

for the multivariate vector of variables observed at d locations $s_{1}, \ldots, s_{d} \subset \mathbb{R}^{k}$.
When the distinction is important, we point it out explicitly (for example, for "functional convergence" in a space of functions with continuous sample paths defined over a compact domain D).
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes

Componentwise maxima

Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Componentwise maxima of random vectors

Consider a sequence of iid random vectors

$$
\boldsymbol{x}_{i}=\left(X_{i, 1}, \ldots, X_{i, d}\right) \stackrel{d}{=} \boldsymbol{X} \sim F_{\boldsymbol{X}}
$$

where $F_{\boldsymbol{X}}$ is the joint distribution of the components of \boldsymbol{X} :

$$
F_{\boldsymbol{X}}(\boldsymbol{x})=F_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{d}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{d} \leq x_{d}\right)
$$

The componentwise maximum

$$
\boldsymbol{M}_{n}=\left(M_{n, 1}, \ldots, M_{n, d}\right)=\left(\max _{i=1}^{n} X_{i, 1}, \ldots, \max _{i=1}^{n} X_{i, d}\right)
$$

has distribution $F_{\boldsymbol{X}}^{n}$, that is, for $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$,

$$
F_{\boldsymbol{X}}^{n}(\boldsymbol{x})=\left(F_{X}(\boldsymbol{x})\right)^{n}=\operatorname{Pr}\left(X_{i, 1} \leq x_{1}, \ldots, X_{i, d} \leq x_{d}, i=1, \ldots, n\right)
$$

\triangle The componentwise maximum \boldsymbol{M}_{n} can be composed of values $X_{i, j}$ with different indices i.

Illustration: bivariate componentwise block maxima
A bivariate series $\boldsymbol{X}_{i}=\left(X_{i, 1}, X_{i, 2}\right)$ (with strong cross-correlation) and its componentwise maxima within the blocks separated by red lines. Most but not all of the maxima occur at the same time in the two series.

Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (d-dimensional) distribution G is called max-stable if there exist deterministic vector sequences $\boldsymbol{\alpha}_{n}=\left(\alpha_{n, 1}, \ldots, \alpha_{n, d}\right)$ and $\boldsymbol{\beta}_{n}=\left(\beta_{n, 1}, \ldots, \beta_{n, d}\right)>\mathbf{0}$, $n \in \mathbb{N}$, such that

$$
G^{n}\left(\boldsymbol{\alpha}_{n}+\boldsymbol{\beta}_{n} \boldsymbol{z}\right)=G(z), \quad z \in \mathbb{R}^{d}
$$

If all finite-dimensional distributions of a stochastic process $\boldsymbol{Z}=\left\{Z(s), s \in D \subset \mathbb{R}^{k}\right\}$ are max-stable, we call \boldsymbol{Z} a max-stable process.

Equivalently, if $\boldsymbol{X}_{1} \sim G$, then the componentwise maximum over n iid copies of \boldsymbol{X}_{1} satisfies

$$
\frac{\boldsymbol{M}_{n}-\alpha_{n}}{\boldsymbol{\beta}_{n}} \quad \stackrel{d}{=} \quad X_{1}, \quad n \in \mathbb{N}
$$

Multivariate max-stability is stronger than max-stability of the univariate marginal distributions.

- If $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{d}\right) \sim G$ with $Z_{j} \sim G_{j}$, then the univariate marginal distributions G_{j} are max-stable:

$$
G j\left(z_{j}\right)=\operatorname{GEV}\left(z_{j} ; \xi_{j}, \mu_{j}, \sigma_{j}\right)=\operatorname{Pr}\left(Z_{j} \leq z_{j}\right)=G\left(\infty, \ldots, \infty, z_{j}, \infty, \ldots, \infty\right)
$$

- Additionally, max-stability of G implies a stability property for the dependence structure.

Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction

If there exist deterministic normalizing vector sequences $\boldsymbol{a}_{n}=\left(a_{n, 1}, \ldots, a_{n, d}\right)$ and $\boldsymbol{b}_{n}=\left(b_{n, 1}, \ldots, b_{n, d}\right)>0, n \in \mathbb{N}$, such that the following convergence holds,

$$
\frac{\boldsymbol{M}_{n}-\boldsymbol{a}_{n}}{\boldsymbol{b}_{n}} \rightarrow \boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{d}\right) \sim G, \quad n \rightarrow \infty
$$

where \boldsymbol{Z} has non-degenerate marginal distributions, then G is a multivariate extreme-value distribution, that is, a multivariate max-stable distribution.

If all finite-dimensional distributions of a process $\boldsymbol{X}=\left\{X(s), s \in D \subset \mathbb{R}^{k}\right\}$ satisfy the above convergence, then $\boldsymbol{Z}=\left\{Z(s), s \in D \subset \mathbb{R}^{k}\right\}$ is a max-stable process.
(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of finite-dimensional distributions. There also exist results for convergence in spaces of continuous functions over a compact domain D.

Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the marginal distributions F_{j} of X_{j} and G_{j} of Z_{j}.

- Often, the unit Fréchet marginal distribution is used:

$$
G_{j}^{\star}(z)=\operatorname{GEV}(z ; \xi=1, \mu=1, \sigma=1)=\exp \left(-\frac{1}{z}\right), \quad z>0 .
$$

- We can transform any continuous random variable $X \sim F$ towards a variable with unit Fréchet distribution as follows: $X^{\star}=-\frac{1}{\log F(X)} \sim G^{\star}$.
- If $X_{j} \sim \operatorname{GEV}(\xi, \mu, \sigma)$, then $X_{j}^{\star}=\left(1+\xi \frac{X-\mu}{\sigma}\right)^{1 / \xi} \sim G_{j}^{\star}$.
- If G is a multivariate max-stable distribution, we write G^{\star} for the corresponding max-stable distribution with unit Fréchet margins. We call G^{\star} a simple max-stable distribution.

We call representations simple if they are based on the marginal \star-scale.

Simple Maximum Domain of Attraction

We use the following notation: $T_{\xi, \mu, \sigma}(z)=\left(1+\xi \frac{z-\mu}{\sigma}\right)^{1 / \xi}$.

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector $\boldsymbol{X} \sim F_{\boldsymbol{X}}$. The following two statements are equivalent:
(1) The distribution $F_{\boldsymbol{X}}$ is in the MDA of a multivariate max-stable distribution G.
(2) The following two properties hold jointly:
(1) Marginal convergence: Each component X_{j} is in the univariate MDA of a $\operatorname{GEV}\left(\xi_{j}, \mu_{j}, \sigma_{j}\right)$ distribution.
(2) Convergence on the standardized scale: The distribution of the marginally standardized random vector

$$
\boldsymbol{x}^{\star}=\left(X_{1}^{\star}, \ldots, X_{d}^{\star}\right) \sim F_{\boldsymbol{X}^{\star}}
$$

satisfies

$$
F_{X^{\star}}^{n}(n z) \rightarrow G^{\star}(z), \quad n \rightarrow \infty,
$$

i.e., $F_{X^{\star}}$ is in the MDA of G^{\star}, where

$$
G\left(z_{1}, \ldots, z_{d}\right)=G^{\star}\left(T_{\xi_{1}, \mu_{1}, \sigma_{1}}\left(z_{1}\right), \ldots, T_{\xi_{d}, \mu_{d}, \sigma_{d}}\left(z_{d}\right)\right)
$$

With standardized marginal distributions, we can choose normalizing vector sequences $\boldsymbol{a}_{n}^{\star}=(0, \ldots, 0)$ and $\boldsymbol{b}_{n}^{\star}=(n, \ldots, n)$.

Some remarks about max-stable dependence

- There is no exhaustive representation of all simple max-stable distributions G^{\star} using a finite number of parameters.
- We can write G^{\star} using the exponent function V^{\star},

$$
G^{\star}(z)=\exp \left(-V^{\star}(z)\right), \quad z>\mathbf{0},
$$

where $t \times V^{\star}(t \boldsymbol{z})=V^{\star}(\boldsymbol{z})((-1)$-homogeneity $)$.

- We say that two variables X_{1} and X_{2} are asymptotically independent if

$$
G\left(z_{1}, z_{2}\right)=G_{1}\left(z_{1}\right) \times G_{2}\left(z_{2}\right),
$$

and in this case

$$
G^{\star}\left(z_{1}, z_{2}\right)=\exp \left(-\left(1 / z_{1}+1 / z_{2}\right)\right)=\exp \left(-1 / z_{1}\right) \times \exp \left(-1 / z_{2}\right), \quad z_{1}, z_{2}>0 .
$$

Example: multivariate logistic distribution

A large variety of parametric multivariate max-stable distribution has been proposed.

The multivariate logistic model was introduced by Emil J. Gumbel in 1960 and can be defined through its exponent function

$$
V^{\star}(z)=\left(z_{1}^{-1 / \alpha}+\ldots+z_{d}^{-1 / \alpha}\right)^{\alpha}, \quad z>0
$$

such that

$$
G^{\star}\left(z_{1}, \ldots, z_{d}\right)=\exp \left(-\left(z_{1}^{-1 / \alpha}+\ldots+z_{d}^{-1 / \alpha}\right)^{\alpha}\right), \quad z>0
$$

with parameter $0<\alpha \leq 1$ and

- perfect dependence for $\alpha \rightarrow 0$;
- independence for $\alpha=1$.

Example: Simulations of bivariate logistic distribution

Sample size $n=500$
Bivariate scatterplots show $\log \boldsymbol{Z}^{\star}$ (standard Gumbel margins) with $\boldsymbol{Z}^{\star} \sim G^{\star}$

$$
\alpha=0.1
$$

$$
\alpha=0.5
$$

Example: Huesler-Reiss distribution

Huesler-Reiss distributions are related to multivariate Gaussian distributions.
Consider a multivariate Gaussian vector $\tilde{\boldsymbol{Y}}$.

Bivariate case: the simple max-stable distribution has parameter $\gamma_{12}=\operatorname{Var}\left(\tilde{Y}_{2}-\tilde{Y}_{1}\right)>0$ and for $z_{1}, z_{2}>0$,

$$
G^{\star}\left(z_{1}, z_{2}\right)=\exp \left(-\frac{1}{z_{1}} \Phi\left(\frac{\sqrt{\gamma_{12}}}{2}+\frac{1}{\sqrt{\gamma_{12}}} \log \frac{z_{2}}{z_{1}}\right)-\frac{1}{z_{2}} \Phi\left(\frac{\sqrt{\gamma_{12}}}{2}+\frac{1}{\sqrt{\gamma_{12}}} \log \frac{z_{1}}{z_{2}}\right)\right)
$$

(with standard Gaussian cdf Φ)
\Rightarrow independence for $\gamma_{12} \rightarrow \infty$, perfect dependence for $\gamma_{12} \rightarrow 0$

The general multivariate distribution G^{\star} is parametrized by $d(d-1) / 2$ variogram values $\gamma_{j_{1}, j_{2}}=\operatorname{Var}\left(\tilde{Y}_{j_{2}}-\tilde{Y}_{j_{1}}\right)$ for $1 \leq j_{1}<j_{2} \leq d$.

Example: Simulations of the Huesler-Reiss distribution

Sample size $n=500$
Relatively weak dependence
$\log Z^{\star}$ (Gumbel margins)

\boldsymbol{Z}^{\star} (Fréchet margins)

Example, cont'd

Sample size $n=500$
Relatively strong dependence
Z^{*} (Fréchet margins)

(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$ of a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right) \sim F$, the following two statements are equivalent:
(1) The distribution F is in the multivariate MDA of the max-stable distribution G for the normalizing sequences $\boldsymbol{a}_{n} \in \mathbb{R}^{d}$ and $\boldsymbol{b}_{n}>\mathbf{0}$.
(2) For the normalizing sequences $\boldsymbol{a}_{n} \in \mathbb{R}^{d}$ and $\boldsymbol{b}_{n}>\mathbf{0}$, we have the following point-process convergence with a locally finite Poisson point process limit:

$$
\left\{\frac{\boldsymbol{X}_{i}-\boldsymbol{a}_{n}}{\boldsymbol{b}_{n}}, i=1, \ldots, n\right\} \rightarrow\left\{\boldsymbol{P}_{i}, \quad i \in \mathbb{N}\right\} \sim \operatorname{PPP}(\Lambda), \quad n \rightarrow \infty
$$

with intensity measure Λ.
If 1$)$ and 2) hold, then $G(z)=\exp (-V(z))$ with

$$
V(z)=\Lambda\left((-\infty, z]^{c}\right)
$$

where the exponent measure \wedge is defined on $A_{\Lambda}=\left(\overline{\boldsymbol{A}}_{\xi_{1}, \mu_{1}, \sigma_{1}} \times \ldots \times \overline{\boldsymbol{A}}_{\xi_{d}, \mu_{d}, \sigma_{d}}\right) \backslash \boldsymbol{u}_{\star}$, with the marginal GEV parameters $\xi_{j}, \mu_{j}, \sigma_{j}, j=1, \ldots, d$, where the lower endpoint

$$
\boldsymbol{u}_{\star}=\left(\inf A_{\xi_{1}, \mu_{1}, \sigma_{1}}, \ldots, \inf A_{\xi_{d}, \mu_{d}, \sigma_{d}}\right)
$$

is excluded.

Simple representation with standardized margins

 Specifically, the convergence of componentwise maxima and of point patterns is equivalent on the simple scale using standardized marginal distributions in \boldsymbol{X}^{\star}.
Recall: Standardized marginal scale

- $X_{j}^{\star}=-1 / \log F_{j}\left(X_{j}\right)$ (or any other probability integral transform ensuring $X_{j}^{\star} \geq 0$ and $x \times \operatorname{Pr}\left(X_{j}^{\star}>x\right) \rightarrow 1$ as $\left.x \rightarrow \infty\right)$
- Normalizing sequences on standardized scale are $\boldsymbol{a}_{n}=\mathbf{0}$ and $\boldsymbol{b}_{n}=(n, \ldots, n)$
- GEV margins of G^{\star} are unit Fréchet $G_{j}^{\star}\left(z_{j}\right)=\exp \left(-1 / z_{j}\right), z_{j}>0\left(\xi_{j}=1\right.$, $\left.\mu_{j}=1, \sigma_{j}=1\right)$.

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set $B \subset A_{\Lambda}$, the simple exponent measure Λ^{*} satisfies

$$
\Lambda(B)=\Lambda^{\star}\left(B_{\boldsymbol{\xi}, \mu, \boldsymbol{\sigma}}\right)
$$

where $B_{\xi, \mu, \boldsymbol{\sigma}}=\left\{\left(\boldsymbol{T}_{\xi_{1}, \mu_{1}, \sigma_{1}}\left(x_{1}\right), \ldots, T_{\xi_{d}, \mu_{d}, \sigma_{d}}\left(x_{d}\right)\right) \mid\left(x_{1}, \ldots, x_{d}\right) \in B\right\}$. The simple measure Λ^{\star} is defined on $A_{\Lambda^{\star}}=[0, \infty)^{d} \backslash \mathbf{0}$ and is (-1)-homogeneous, that is, for any Borel set $B \subset A_{\Lambda^{\star}}$, we have

$$
t \times \Lambda^{\star}(t B)=\Lambda^{\star}(B), \quad t>0
$$

Bivariate illustration of asymptotic stability

$$
(D=\{1,2\})
$$

Simple scale

$$
\begin{gathered}
(\boldsymbol{\xi}=(1,1), \boldsymbol{\mu}=(1,1), \boldsymbol{\sigma}=(1,1)) \\
\boldsymbol{\alpha}_{n}=(n, n), \boldsymbol{\beta}_{n}=(0,0) \\
n \times \Lambda^{\star}(n B)=\Lambda^{\star}(B)
\end{gathered}
$$

Standard exponential scale $(\boldsymbol{\xi}=(0,0), \boldsymbol{\mu}=(0,0), \boldsymbol{\sigma}=(1,1))$

$$
\begin{gathered}
\boldsymbol{\alpha}_{n}=(1,1), \boldsymbol{\beta}_{n}=(\log n, \log n) \\
n \times \Lambda(\log (n)+B)=\Lambda(B)
\end{gathered}
$$

The trinity: three classical multivariate formulations

- The trinity of the three classical limit also holds in the multivariate setting.
- For threshold exceedances, a standard approach is to condition on an exceedance in at least one of the d components.
- To avoid technical notation, we focus on the simple setting.

Theorem

The following three convergences are equivalent:

- Point-process convergence:

$$
\left\{\frac{\boldsymbol{X}_{i}^{\star}}{n}, i=1, \ldots, n\right\} \rightarrow\left\{\boldsymbol{P}_{i}^{\star}, i \in \mathbb{N}\right\} \sim \operatorname{PPP}\left(\Lambda^{\star}\right), \quad n \rightarrow \infty
$$

- Convergence of componentwise maxima:

$$
\frac{\boldsymbol{M}_{n}^{\star}}{n} \rightarrow \boldsymbol{Z}^{\star} \sim G^{\star}, \quad n \rightarrow \infty,
$$

with $G^{\star}(z)=\exp \left(-V^{\star}(z)\right)$ where $V^{\star}(z)=\Lambda^{\star}\left([0, z]^{C}\right)$.

- Peaks-Over-Threshold convergence:

$$
\frac{\boldsymbol{X}^{\star}}{u} \left\lvert\,\left(\max _{j=1}^{d} X_{j}^{\star}>u\right) \rightarrow \boldsymbol{Y}^{\star} \sim \frac{\Lambda^{\star}\left(\cdot \cap[\mathbf{0}, \mathbf{1}]^{C}\right)}{\Lambda^{\star}\left([\mathbf{0}, \mathbf{1}]^{C}\right)}\right., \quad u \rightarrow \infty .
$$

Remarks about the functional setting

- The trinity of limits also holds in the functional setting (e.g., Dombry \& Ribatet, 2016).
- Usually one considers $\boldsymbol{X} \in \mathcal{C}(D)$ with compact domain D.
- One has to appropriately define weak convergence in a Banach function space.
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process $\left\{\boldsymbol{P}_{i}^{\star}, i \in \mathbb{N}\right\}$ with simple ((-1)-homogeneous) intensity measure $\boldsymbol{\Lambda}^{\star}$ can be constructed as follows:

$$
\left\{P_{i}^{\star}(s), i \in \mathbb{N}\right\}=\left\{R_{i} W_{i}(s), i \in \mathbb{N}\right\}
$$

where $R_{i}=1 / U_{i}$ and

- $0<U_{1}<U_{2}<\ldots$ are the points of a unit-rate Poisson process on $[0, \infty)$, and
- $\boldsymbol{W}_{i}=\left\{W_{i}(s)\right\}$ are iid nonnegative random functions, independent of $\left\{U_{i}\right\}$, with $\mathbb{E} W_{i}(s)=1$ and $\mathbb{E} W_{i}(s)^{1+\varepsilon}<\infty$ for some $\varepsilon>0$.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process \boldsymbol{Z}^{\star} can be constructed as

$$
Z^{\star}(s)=\max _{i \in \mathbb{N}} R_{i} W_{i}(s)
$$

and any such construction is a simple max-stable process.

Illustration: simple max-stable construction

- In gray, "points" $\boldsymbol{P}_{i}^{\star}$ of the Poisson process on $D=[0,5]$
- Max-stable process is the componentwise maximum (in black)

Simulation based on the spectral representation

If it is simple to simulate from the distribution F_{W} of the spectral process \boldsymbol{W}, we can draw samples from the simple max-stable process \boldsymbol{Z}^{\star}.

Exact simulation

If $P\left(W_{j} \leq w_{0}\right)=1$ for some threshold value $0<w_{0}<\infty, j=1, \ldots, d$, then we can perform exact simulation of Z^{\star} (even if $Z_{j}^{\star}=\max _{i \in \mathbb{N}} R_{i} W_{i j}$ is defined as a maximum over an infinite number of components):
(1) set $m=1$
(2) generate $E_{m} \sim \operatorname{Exp}(1)$
(3) generate $\boldsymbol{W}_{m}=\left(W_{m 1}, \ldots, W_{m d}\right)^{T} \sim F_{W}$
(4) set $Z^{\star}=\left(Z_{1}^{\star}, \ldots, Z_{d}^{\star}\right)^{T}$ with $Z_{j}^{\star}=\max _{i=1, \ldots, m} \frac{W_{i j}}{\sum_{k=1}^{i} E_{k}}$ for $j=1, \ldots$,d
(9) IF $\frac{w_{0}}{\sum_{k=1}^{m} E_{k}} \leq \min _{j=1, \ldots, d} Z_{j}^{\star} \quad$ RETURN Z^{\star}

ELSE \quad set $m=m+1$ and GO TO 2

Remarks:

- If the distribution of W_{j} is not finitely bounded, we can fix w_{0} such that $P\left(W_{j}>y_{0}\right)$ becomes very small and perform approximation simulation.
- Even with unbounded W_{j}, exact simulation remains possible for many models using different algorithms (see the review of Oesting, Strokorb, 2022).

Example: Log-Gaussian spectral processes

A possible construction uses a centered Gaussian process $\tilde{W}(s)$ with variance function $\sigma^{2}(s)$ and sets

$$
W(s)=\exp \left(\tilde{W}(s)-\sigma^{2}(s) / 2\right)
$$

\Rightarrow A class of popular max-stable models:

- Multivariate: Huesler-Reiss distributions
- Spatial: Brown-Resnick processes

Remark: The distribution of the simple max-stable process $Z^{\star}=\left\{Z^{\star}(s), s \in D\right\}$ depends only on the variogram

$$
\gamma\left(s_{1}, s_{2}\right)=\operatorname{Var}\left(\tilde{W}\left(s_{2}\right)-\tilde{W}\left(s_{1}\right)\right), \quad s_{1}, s_{2} \in D
$$

Illustration: Simulation of Brown-Resnick processes

Two realisation of a spatial Brown-Resnick process (obtained using the rmaxstab function of the SpatialExtremes package) Simulation on a grid 20×20 (such that $d=400$) in the square $[0,10]^{2}$.

Illustration: process $\log \left(Z^{\star}(s)\right)$ (with standard Gumbel margins)

(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France
(5) Perspectives

Illustration: Spatial co-occurrence of exceedances

Original spatial field

Excursion set above a high threshold

Assessing co-occurrences of threshold exceedances

Threshold exceedances can occur simultaneously,

- in different variables,
- at nearby locations,
- at close time steps.

Do co-occurrences happen by chance (independence), or are they correlated in some way?

A simple and flexible exploratory approach

Idea: Study pairwise conditional co-occurrence probabilities given as

$$
\operatorname{Pr}\left(X_{2}>u \mid X_{1}>u\right)=\frac{\operatorname{Pr}\left(X_{1}>u, X_{2}>u\right)}{\operatorname{Pr}\left(X_{1}>u\right)}
$$

and assess how they change with increasing u and for different pairs, for instance with respect to temporal lag or spatial distance.

Tail correlation coefficient

Consider a bivariate random vector $\left(X_{1}, X_{2}\right)$ with $X_{1} \sim F_{1}$ and $X_{2} \sim F_{2}$.

Tail correlation

Consider the conditional probability

$$
\chi(u)=\operatorname{Pr}\left(F_{2}\left(X_{2}\right)>u \mid F_{1}\left(X_{1}\right)>u\right)=\frac{\operatorname{Pr}\left(F_{2}\left(X_{2}\right)>u, F_{1}\left(X_{1}\right)>u\right)}{\operatorname{Pr}\left(F_{1}\left(X_{1}\right)>u\right)}, \quad u \in(0,1) .
$$

We define the following limit (if it exists):

$$
\chi=\lim _{u \rightarrow 1} \chi(u) \in[0,1]
$$

The coefficient χ symmetric with respect to X_{1} and X_{2} and is known as χ-measure or tail correlation. We say that

- X_{1} and X_{2} are asymptotically dependent if $\chi>0$;
- X_{1} and X_{2} are asymptotically independent if $\chi=0$.

Link between tail correlation and max-stability

We have

$$
\chi=\lim _{z \rightarrow \infty} \operatorname{Pr}\left(X_{2}^{\star}>z \mid X_{1}^{\star}>z\right)=\lim _{z \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}^{\star}>z, X_{2}^{\star}>z\right)}{\operatorname{Pr}\left(X_{1}^{\star}>z\right)}
$$

Assume that $\left(X_{1}, X_{2}\right)$ is in the MDA of G. The bivariate max-stable convergence

$$
F_{\left(X_{1}^{\star}, X_{2}^{\star}\right)}(n z, n z)^{n} \rightarrow G^{\star}(z, z), \quad z>0
$$

is equivalent to

$$
1-F_{\left(X_{1}^{\star}, X_{2}^{\star}\right)}(n z, n z) \approx-\log G^{\star}(n z, n z), \quad \text { for large } n
$$

By using

$$
\operatorname{Pr}\left(X_{1}^{\star}>z, X_{2}^{\star}>z\right)=\left(1-F_{X_{1}^{\star}}(z)\right)+\left(1-F_{X_{2}^{\star}}(z)\right)-\left(1-F_{\left(X_{1}^{\star}, X_{2}^{\star}\right)}(z, z)\right)
$$

and $-\log G^{\star}(n z, n z)=\frac{V^{\star}(1,1)}{n z}$ and $1-G_{j}^{\star}(n z) \approx 1 /(n z)$ in (\star), we obtain

$$
\chi=2-V^{\star}(1,1)
$$

Remark: asymptotic independence corresponds to classical independence in the max-stable limit distribution. We have $\chi=0$ if and only if $V^{\star}(1,1)=2$, and in this case $V^{\star}\left(z_{1}, z_{2}\right)=1 / z_{1}+1 / z_{2}$ for $z_{1}, z_{2}>0$, and $G^{\star}\left(z_{1}, z_{2}\right)=G_{1}^{\star}\left(z_{1}\right) \times G_{2}^{\star}\left(z_{2}\right)$.

Illustration: empirical tail correlation

Data setting: $n=200, u=0.9$.
Blue points: exceedances of empirical distribution function $\hat{F}_{1}\left(X_{1}\right)$ above u. Red points: exceedances of $\hat{F}_{2}\left(X_{2}\right)$ above u given that $\hat{F}_{1}\left(X_{1}\right)$ is above u. Empirical tail correlation: $\hat{\chi}(u)=\frac{6}{20}=0.3$.

Tail autocorrelation function (Extremogram)

Consider $X(s) \sim F$ with index $s \in \mathbb{R}^{k}$.
What is the tail correlation at a given distance $h=\Delta s \geq 0$?
For $h \geq 0$, we consider the conditional exceedance probability
$\chi(h ; u)=\operatorname{Pr}(F(X(s+h))>u \mid F(X(s))>u)=\frac{\operatorname{Pr}(F(X(s+h))>u, F(X(s))>u)}{\operatorname{Pr}(F(X(s))>u)}$,
for $u \in(0,1)$.
We define the tail autocorrelation function as the limit (if it exists)

$$
\chi(h)=\lim _{u \rightarrow 1} \chi(h ; u) \in[0,1] .
$$

- By definition, $\chi(0)=1$.
- Usually, $\chi(h)$ decreases as $\|h\|$ increases.
- $\chi(h)$ is also called auto-tail dependence function or extremogram.

Illustration: Empirical (temporal) extremogram

Top row: temporal independence in $X(t)$; bottom row: asymptotic dependence Left column: $u=0.95$; right column: $u=0.99$
Dashed red line corresponds to theoretical $\chi(h ; u)$ for independence.

Summary measures for more than two variables Consider d random variables $X_{1}, X_{2}, \ldots, X_{d}$ with $d \geq 2$ and $X_{j} \sim F_{j}$.

Extremal coefficient (maxima)

The following limit (if it exists) is called extremal coefficient:

$$
\theta_{d}=\lim _{u \rightarrow \infty} u \times \operatorname{Pr}\left(\max _{j=1, \ldots, d} X_{j}^{\star}>u\right)
$$

- $\theta_{d}=V(1, \ldots, 1)$
- $\theta_{2}=2-\chi$.
- Interpretation: $d / \theta_{d}=$ average cluster size of jointly extreme events
- With MDA convergence, we have $G^{\star}\left(z^{\star}, \ldots, z^{\star}\right)=\exp \left(-\theta_{d} / z^{\star}\right), z^{\star}>0$.

Tail dependence coefficient (minima)

The following limit (if it exists) is called tail dependence coefficient:

$$
\lambda_{d}=\lim _{u \rightarrow \infty} \operatorname{Pr}\left(\min _{j=1, \ldots, d} X_{j}^{\star}>u \mid X_{1}^{\star}>u\right)=\lim _{u \rightarrow \infty} u \times \operatorname{Pr}\left(\min _{j=1, \ldots, d} X_{j}^{\star}>u\right)
$$

- For $d=2$, we have $\lambda_{2}=\chi$.
- Extremal coefficients and tail dependence coefficients are linked through inclusion-exclusion formulas using coefficients for $\tilde{d}=2, \ldots, d$.
- Summary measures for co-occurrences of threshold exceedances
- Focus on minima and maxima of the components of \boldsymbol{X}^{\star}

Next...

- More flexibility through more general risk functionals
- Generative and parametric models, not only summaries
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Multivariate and functional threshold exceedances

Consider $\boldsymbol{x} \in \mathbb{R}^{D}$ for a compact domain $D \subset \mathbb{R}^{k}$ with $|D|>1$.
Note: for a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$, we can set $D=\{1, \ldots, d\}$.
No unique definition of threshold exceedances \Rightarrow Use a risk functional r

$$
\text { Extreme event occurs if } r(\boldsymbol{x})>u \text { with high threshold } u
$$

Bivariate illustrations:

Average
$r\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$

Fixed component

$$
r\left(x_{1}, x_{2}\right)=x_{1}
$$

Many relevant choices for risk functionals

To formulate asymptotic theory, we use continuous homogeneous risk functionals

$$
r:[0, \infty)^{D} \rightarrow[0, \infty), \quad r(t \times \boldsymbol{x})=t \times r(\boldsymbol{x})
$$

and we apply r on the simple scale.
We further assume continuous realizations: $\boldsymbol{x} \in \mathcal{C}(D)$.
There is also notation ℓ (for loss) instead of r (for risk).

Examples for $D=\{1,2, \ldots, d\}$

- Minimum: $r\left(x_{1}, \ldots, x_{d}\right)=\min _{j=1}^{d} x_{j}$
- Maximum: $r\left(x_{1}, \ldots, x_{d}\right)=\max _{j=1}^{d} x_{j}$
- $k^{\text {th }}$ order statistics: $r\left(x_{1}, \ldots, x_{d}\right)=k^{\text {th }}$ smallest value among x_{1}, \ldots, x_{d}
- Specific component: $r\left(x_{1}, \ldots, x_{d}\right)=x_{j_{0}}$
- Arithmetic average: $r\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{d} \sum_{j=1}^{d} x_{j}$
- Geometric average $r\left(x_{1}, \ldots, x_{d}\right)=\left(\prod_{j=1}^{d} x_{j}\right)^{1 / d}$
- Any norm, such as $r\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{j=1}^{d} x_{j}^{p}\right)^{1 / p}$

Comparison of arithmetic and geometric average

Arithmetic average:

$$
r\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{d} \sum_{j=1}^{d} x_{j}
$$

Geometric average:

$$
r\left(x_{1}, \ldots, x_{d}\right)=\left(\prod_{j=1}^{d} x_{j}\right)^{1 / d}
$$

- Constant values $x_{1}=\ldots=x_{d} \Rightarrow$ Geometric $=$ Arithmetic average
- Stronger variability in values x_{j} leads to relatively lower Geometric average

How to standardize marginal distributions (recall + extension)

Given $X_{j} \sim F_{j}$ with continuous distribution function F_{j}, we apply a probability integral transform to a standardized scale X_{j}^{\star} satisfying

- $X_{j}^{\star} \geq 0$, and
- $x \times \operatorname{Pr}\left(X_{j}^{\star}>x\right) \rightarrow 1$ as $x \rightarrow \infty$, which means $\operatorname{Pr}\left(X_{j}^{\star}>x\right) \approx 1 / x$ for large x

Two common choices

- Unit Fréchet scale: $X_{j}^{\star}=-\frac{1}{\log } F\left({ }_{j}\left(X_{j}\right)\right)$
(makes sense when working with maxima since the unit Fréchet is a GEV)
- Standard Pareto scale: $X_{j}^{\star}=1 /\left(1-F_{j}\left(X_{j}\right)\right)$
(makes sense when working with exceedances since the standard Pareto is a GPD)

Interpretation of X_{j}^{\star} as the (approximate) return period of X_{j} :
for an independent copy \bar{X}_{j} of X_{j}, we get

$$
\operatorname{Pr}\left(\bar{X}_{j}>X_{j} \mid X_{j}\right) \approx \frac{1}{X_{j}^{\star}} \quad \text { for relatively large } X_{j}
$$

(Note: If $\operatorname{Pr}(A)=1 / T$, then the event A has a return period of T time units)

Limits conditional to risk exceedances $r(\boldsymbol{X})>u$

r-Pareto limit processes (Dombry \& Ribatet 2015)

Consider a random element $\boldsymbol{X}=\{X(s), s \in D\} \subset \mathcal{C}(D)$ with compact domain D.

- If we have the following (weak) convergence in $\mathcal{C}(D)$,

$$
\left.\frac{\boldsymbol{X}^{\star}}{u} \right\rvert\,\left(r\left(\boldsymbol{X}^{\star}\right)>u\right) \quad \rightarrow \quad \boldsymbol{Y}_{r}, \quad u \rightarrow \infty,
$$

then \boldsymbol{Y}_{r} is an r-Pareto process, satisfying Peaks-Over-Threshold stability:

$$
\left.\frac{\boldsymbol{Y}_{r}}{u} \right\rvert\,\left(r\left(\boldsymbol{Y}_{r}\right)>u\right) \quad \stackrel{d}{=} \quad \boldsymbol{Y}_{r}, \quad \text { for any } u>1 .
$$

- r-Pareto processes are characterized by a scale-profile decomposition:

$$
\boldsymbol{Y}_{r}=R \times \boldsymbol{V}, \quad R=r\left(\boldsymbol{Y}_{r}\right) \sim \text { standard Pareto, } \quad \boldsymbol{V}=\frac{\boldsymbol{Y}_{r}}{r\left(\boldsymbol{Y}_{r}\right)}, \quad R \perp \boldsymbol{V}
$$

\Rightarrow Above high thresholds u, scale $r\left(\boldsymbol{X}^{\star}\right)$ and profile $\boldsymbol{X}^{\star} / r\left(\boldsymbol{X}^{\star}\right)$ become independent!

Link to other limits

- Trinity of limits:

Convergence of componentwise maxima
\Leftrightarrow
Point-process convergence
\Leftrightarrow
r-Pareto convergence for $r=$ sup

- r-Pareto convergence for sup $\Rightarrow r$-Pareto convergence for all r
- The probability measure of the r-Pareto process \boldsymbol{Y}_{r} is

$$
\boldsymbol{Y}_{r} \sim \frac{\Lambda^{\star}\left(\cdot \cap A_{r}\right)}{\Lambda^{\star}\left(A_{r}\right)} \quad \text { with } A_{r}=\{\boldsymbol{y} \in \mathcal{C}(D) \mid r(\boldsymbol{y}) \geq 1\}
$$

- Consider the simple point-process limit $\left\{\boldsymbol{P}_{i}^{\star}, i \in \mathbb{N}\right\}$
\Rightarrow Construction of r-Pareto processes $\hat{=}$ Extraction of r-exceedances:

$$
\boldsymbol{P}_{i}^{\star} \mid\left(r\left(\boldsymbol{P}_{i}^{\star}\right)>1\right) \quad \stackrel{d}{=} \quad \boldsymbol{Y}_{r}
$$

Illustration: Simulation of r-Pareto processes

- Same realizations of the Poisson point process in all three displays
- Colors correspond to 3 most extreme risks for different risk functionals r
- Illustrations are on the $\log \left((\cdot)^{\star}\right)$-scale (Gumbel scale)
$r=$ Value at fixed location

$$
r=\text { Geometric Average }
$$

$r=$ Arithmetic Average

Example: Geometric average risk for Brown-Resnick models

The popular Huesler-Reiss and Brown-Resnick models have log-Gaussian profile processes \boldsymbol{V} for r chosen as the geometric average.
This is very convenient for statistical methods!
Recall: Poisson process has construction $\left\{P_{i}^{\star}(s)\right\}=\left\{R_{i} \exp \left(\tilde{W}_{i}(s)-\sigma^{2}(s)\right)\right\}$ with a centered Gaussian process \tilde{W} with variance function $\sigma^{2}(s)$

Log-Gaussian profile processes for $r=$ Geometric average

Given the Pareto process $\boldsymbol{Y}_{r}=R \times \boldsymbol{V}$, we have

$$
\log V(s) \stackrel{d}{=} \tilde{W}(s)-\bar{W}-\operatorname{const}(s ; \Gamma)
$$

with

- a centered Gaussian process $\tilde{W}=\{\tilde{W}(s), s \in D\}$ and its spatial average \bar{W},
- a constant const $(s ; \Gamma)$, explicit in terms of the semivariogram matrix

$$
\Gamma=\left\{\gamma\left(s_{1}, s_{2}\right), s_{1}, s_{2} \in D\right\}
$$

of \tilde{W}.
(Result follows from Engelke et al. 2012; Dombry et al. 2016; Engelke et al. 2019)

Semivariograms for log-Gaussian profile processes

Recall: The log-profile process is

$$
\log V(s)=\tilde{W}(s)-\bar{W}-\operatorname{const}(s ; \Gamma)
$$

Same semivariograms of the \log-profile $\log V$ and the original Gaussian process $\tilde{W}!$

$$
\gamma_{\log } v\left(s_{1}, s_{2}\right)=\frac{1}{2} \mathbb{V}\left[\log V\left(s_{2}\right)-\log V\left(s_{1}\right)\right]=\frac{1}{2} \mathbb{V}\left[\tilde{W}\left(s_{2}\right)-\tilde{W}\left(s_{1}\right)\right]=\gamma_{\tilde{w}}\left(s_{1}, s_{2}\right)
$$

\Rightarrow Classical variogram analysis becomes possible for $\log \boldsymbol{V}$!
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Gridded temperature reanalysis data

- Daily average temperature reanalysis of Météo France (SAFRAN model at 8 km resolution)
- Study period 1991-2020
- Focus on summer temperatures (June-September)

Modeling approach

- Marginal transformation to standard Pareto
- We fit separate r-Pareto models for separate administrative regions
- Daily risk exceedances using Geometric Average of return periods
- Temporal declustering with runs method for the risk series $r\left(\boldsymbol{X}_{t}^{\star}\right)$
- Maximum likelihood using $\log \boldsymbol{V}$ with a stable covariance function in $\tilde{\boldsymbol{V}}$

Study domain: 22 French administrative regions

Results: Marginal GPD parameters

Scale $\sigma_{G P}(s)$

Shape $\xi(s)$

Results: Estimated extremal variograms

Based on the stable covariance function

$$
\operatorname{Cov}(\text { Distance })=S D^{2} \times \exp \left(-(\text { Distance } / \text { Scale })^{\text {Shape }}\right)
$$

(for Distance $=\|\Delta s\|=\left\|s_{2}-s_{1}\right\|$)
and maximum likelihood estimation using observations of $\log V$

ID_Region
$-1-12$
$=2=13$
$-3=14$
$4=15$
$-5=$
-6
$-7=$

8
$=8$
-9
-10

$-10=21$
$-11-22$

Results: Estimated tail correlations

$$
\chi(s, s+\Delta s)=\lim _{u \rightarrow \infty} \operatorname{Pr}\left(X^{P}(s+\Delta s)>u \mid X^{P}(s)>u\right)=2(1-\Phi(\sqrt{(\gamma(s, s+\Delta s)}))
$$

Results: Empirical/parametric extremal variograms

- Empirical (in dashed lines) and fitted parametric variograms \triangle Parametric estimates exploit also the Gaussian mean const $(s ; \Gamma)$
- Generally satisfactory fit
- During extreme heat days, stronger spatial variability in the Southern regions

Atlantic Coast

(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Statistical aspects of extreme-value analysis

In practice, we typically have observations of a sample $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ with n fixed.

- Most approaches exploit one of three classical representations: block maxima; threshold exceedances; point patterns.
- Peaks-over-threshold methods offer high flexibility, especially by using risk functionals for dependent extremes.
- We assume that extreme-value limits provide a good approximation for large n or high threshold u.
- Bias-variance tradeoff in statistical estimation:

Higher threshold or Larger block \Leftrightarrow Less bias but higher variance

- Rough distinction between likelihood-based (parametric) approaches and other "semi-parametric" approaches
- Likelihood approaches for dependent extremes usually require calculating $\Lambda\left(A_{r}\right)$ for some risk region A_{r}, which can be computationally very costly, or even prohibitive if $|D|$ is large.

Important topics in current extreme-value research

Types of extreme events:

- Application of risk functionals r directly to \boldsymbol{X} and not to standardized \boldsymbol{X} ฝ
- Improved analysis of nonstationary extremes, especially for applications to climate change
- Compound extremes (in the climate and risk literature)
- Aggregation of not necessarily extreme components leads to extreme impacts
- Example: Persistence of relatively high temperatures and low precipitation leads to extreme drought conditions
- Subasymptotic extremal dependence that is not stable at observed levels
\Rightarrow Non-asymptotic representations and statistical garantuees?

Methods and algorithms:

- Machine Learning for extreme events
- Scalability of algorithms to large datasets, such as climate-model simulations

Some literature for further reading

Theory and probabilistic foundation:

- Resnick (1987). Extreme Values, Regular Variation and Point Processes.

Statistical modeling:

- Coles (2001). An introduction to statistical modeling of extreme values.

Mix of both:

- Embrechts, Klüppelberg, Mikosch (1997). Modelling extremal events: for insurance and finance.
- de Haan, Ferreira (2006). Extreme-value theory: an introduction.

A review of available software (R-based):

- Belzile, Dutang, Northrop, Opitz (2023+). A modeler's guide to extreme-value software. https://arxiv.org/abs/2205.07714

