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Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

e Theory for univariate extremes

e Theory for dependent extremes based on maxima and point processes

e Theory for dependent extremes based on threshold exceedances
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@ Introduction
@ Univariate Extreme-Value Theory
Maxima

Threshold exceedances
Point processes

Componentwise maxima
Point processes

© Representations of dependent extremes using maxima and point processes
Introduction to dependent extremes
Spectral construction of max-stable processes
O Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances

Application example: spatial temperature extremes in France
@ Perspectives
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The origins of Extreme-Value Theory (EVT)

o A probabilistic theory with its origins in the first half of the 20th century:
e Fréchet (1927). Sur la loi de probabilité de I'écart maximum. Annales de la Société
Polonaise de Mathématique.

e Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and
smallest member of a sample. Proceedings of the Cambridge Philosophical Society.

e von Mises (1936). La distribution de la plus grande de n valeurs. Revue Mathématique
de I'Union Interbalcanique

e Gnedenko (1943). Sur la distribution limite du terme maximum d'une serie aleatoire.
Annals of Mathematics.

o Strong development of multivariate and process theory since the 1970s

o Statistical methods and applications
e Often at the origin of theoretical developments
(for example, Tippett's work for the cotton industry)
e Seminal monograph Statistics of Extremes (1958) of Gumbel
e Numerous applications since the 1980s
e Today, strong use for finance/insurance and climate/environment
e Typical goals:

e Estimate and extrapolate extreme-event probabilities
® Stochastically generate new extreme-event scenarios
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Extreme events
Extreme events are located in the upper or lower tail of the distribution:

150+

Count

100+

10 14 18
Observations

Without loss of generality, we focus on the extremes in the upper tail.
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Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X1, X, . ..

Averages S, = % S X

g”—’“—>Z~N(O,1)
On

Gaussian limit distribution
(Sum-stability)

Spatial extension:

Extremes (maxima) M, = max?_; X;

Moz 5 7 ~ GEV(€) (tail index € € R)

n

Extreme-value limit distribution
(Max-stability)

Spatial extension:




7/89

The trinity of the three fundamental approaches
Three asymptotic approaches to study extreme events in an i.i.d. sample {X;}:

(1) M, = max}’:1 X; using blocks of size n
) above a high threshold u: (X;i —u) | Xi > u
) : N(E)=|{Xi € E, i=1,...,n}| for extreme events E

Asymptotic theory
For
e increasing block size n,
e for increasing threshold u, and
o for more and more extreme event sets E,

we obtain coherent theoretical representations across the three approaches.

Maxima Exceedances Occurrences

N(E) =10




@ Univariate Extreme-Value Theory
Maxima
Threshold exceedances
Point processes
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The maximum of a sample

For a series of independent and identically distributed (iid) random variables
Xi~F, i=12,...

we consider the maximum
n
My = max X; ~ F",
i=1

where
F(x) = (F(x))"-
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The fundamental extreme-value limit theorem

Fisher—Tippett—Gnedenko Theorem

Let X;, i =1,2,...iid. If deterministic normalizing sequences a, (location) and
b, > 0 (scale) exist such that

M, —
"bianiZNQ n— oo, (%)
n

with a nondegenerate limit distribution G, then G is of one of the

. :G(z) = exp(—(—x)1 %) with & > 0 (with support (—oco,0))
. . G(z) = exp(— exp(—x)) (with support R)
. : G(2) = exp(—x§) with a > 0 (with support (0, c0))

Remarks:

e Being of a certain type means being equal up to a location-scale transformation:
G(z) = G(a+ bz) with some b > 0, a € R. We can always choose ap, by such
that G = G.

o |If convergence (%) holds, we say that

e Equivalently to (%), we have F"(a, + byz) — G(z), n— oo, z € R.
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Sketch of the proof (1)

A key ingredient is the , here copied from Embrechts,
Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko & Kolmogorov
(1954).

Extremal-Types Theorem

Let A, B, A1, Az, ... be random variables and b, > 0, 8, > 0 and ap, an € R be
deterministic sequences. If the following convergence holds,

A, —
Zn—an i A, n— oo,
b
then the alternative convergence
A —
"9 4B oo, 1)
Bn
holds if and only if
bn an — Qp
— — b€ [0,00), —acR, n— oco.
Bn Bn

If (1) holds, then B < pa + a with a, b being uniquely determined. Moreover, A is
nondegenerate if and only if b > 0, and the A and B are said to belong to the same

type.
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Sketch of the proof (2)

In the following, all convergences are understood for n — oc.

© If the convergence F"(an + bpz) — G(z) holds, then for any t > 0,
Flrtl (aL,,tJ + b\_"tj z) > G(z), zeR (2)
® Observe that
FLtl(a, + bnz) = (F™(an + bnz))L"/" = Gt (2). (3)

® Using the Extremal-Types Theorem, there exist deterministic functions v(t) > 0
and &(t) such that

an — al_nt]

bn
- (1),

—4(t), t>0.
bynt)

bynt)
By considering (2) and (3), we get
G'(z) = G(8(t) +v(t)z), t>0.
© A consequence of the last equality is that for s, t > 0,
y(st) = v(s)r(e),  B(st) = 1(£)5(s) + b(2).

© The solutions of this functional equation are given by the three distribution
functions of the reverse Weibull, Gumbel and Fréchet type.



Generalized Extreme-Value distribution (GEV)

The uses threes parameter to jointly
represent all possible limit distributions G:

5
G(z) = GEV(z: &, p,0) = exp <— {1 + £7N] > (%)
g 14

° (or ) £ € R, determining the extremal type:

o Reverse-Weibull MDA for £ < 0
e Gumbel MDA for £ =0
o Fréchet MDA for £ > 0

e Location parameter p € R

e Scale parameter o > 0

For £ =0, (x*) is the limit for § — 0: G(z) = exp(—exp(—(z — p)/0)), z € R.
The (...)4-operator in (*x) means that the distribution G has positive density dG/dz
for values z satisfying 1 + £ > 0

(=00, n—0/8), €<0,
= Support of the GEV: A; , ,, = { (—00, 00), £=0,
(h—0/§00), £>0.
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Illustration: GEV densities

In the MDA convergence (x), we can always choose the normalizing sequences an, b
such that 4 =0, o = 1, as for the probability densities shown below.
The three types have very different upper tail structure:

o Reverse-Weibull for £ < 0: light tails with finite upper endpoint

(GEV finite upper endpoint is y — o/£)
e Gumbel for £ = 0: exponential tail
o Fréchet for £ > 0: power-law tails, i.e., heavy tails

0.44

0.3 Tail index
— — 05
z
= - =025
E 0.24 0
Q
= — 025

0.5
0.1
0.04
! \
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Empirical illustration

Histograms of i.i.d. samples X;, i = 1,2,..., n, with different tail index .
Heavy tail Exponential tail Bounded tail
£>0 £E=0 £<0

Examples of MDAs of common distributions:
e £ > 0: Pareto (¢ = 1/shape), student’s t (£ = shape)
e ¢ = 0: Normal, Exponential, Gamma, Lognormal
e £ < 0: Uniform (¢ = —1), Beta
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Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with cdf F(x) =1 — exp(—x), x > 0.

C . jid . .
The distribution F" of the maximum M, = max,.":1 X;i, where X; ~ F,i=1,...,n,is

F7(x) = (1 — exp(—x))"

Can we find a, and b, such that lim,—., F"(an + bnx) exists and is nondegenerate?

For x > —logn,
_ n
F"(logn+ x) = (1 — exp(—(log n + x))" = (1 - M)
n
— exp(—exp(—x)), n— oo
Conclusion:

e Using a, = log(n) and b, = 1, we obtain
limp_ 00 F™"(an + bnx) = exp(— exp(—x)) for any x € R.

e The exponential distribution is in the
, i.e., the GEV with € =0, p =0, 0 = 1.
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Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:

‘ Class of extreme-value limit distributions G = Class of

Max-stable distribution

A probability distribution G is called if for any n € N there exist
appropriate choices of deterministic normalizing sequences «, and 3, > 0 such that

G"(an + Bnz) = G(z), for anyn € N.

This also means that the MDA limit (%) is exact (and not asymptotic) if F is
max-stable.
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Threshold exceedances in a univariate sample

I. I .III .””l ]

What are possible limits for threshold excesses
X—u given X>u 7
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Generalized Pareto limits for threshold exceedances

Consider iid X, X1, X2, ... where X ~ F
with upper endpoint x* = sup{x € R: F(x) < 1} € (—o0, cq].

Pickands—Balkema—de-Haan Theorem
Suppose that M, = max(Xi, ..., Xp) converges to a GEV(&, u, o) distribution

according to the Fisher—Tippett—Gnedenko theorem.
Equivalently, there exists a scaling function o(u) > 0 such that
X —u)/o(u)|(X>u) — Y, u—x*,
and Y follows the GPD(&,06pp) given as
GPD(yi€,06pp) = Pr(Y < y) =1— (1 +&y/oerp) /¢y >0,

with scale parameter ogpp > 0.

e This result dates back to the 1970s.
o As before, the case £ = 0 is interpreted as the limit for £ — 0O:

GPD(y;0,06pp) =1 —exp(~y/ogpp), y >0

(= Exponential distribution).
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Sketch of the proof

We here sketch the proof of “=*
(Convergence of maxima leads to convergence of threshold excesses).

©® Set up = ap + bpil for i chosen in the support of the GEV(, i, o). Then,

Pr((X — un)/bn >y | X > up) = ! _1"—_(3,;(:"";(2’;)17))’ @)

® On the one hand, the MDA condition F"(an + bsz) — G(z) implies

1
log F(an + bnz) ~ - log G(z), for large n.

On the other hand, since F(an + bnz) & 1 as n increases, we can use the
first-order approximation log(1 + x) & x for small |x|, such that

log F(an + bnz) =~ F(an + bnz) — 1.

Combining the two yields
1
1— F(an+ bnz) = —= log G(2). (5)
n

® By using the approximation (5) for the numerator and denominator of (4), we get

log G(i + y)

Pr(X—en) /by >y | X > un) > L

=1-GPD(y;&,06pp), n— oo;

with ogpp = o + &(d — p) > 0, and we can set o(un) = bn.
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[llustration: GPD densities

The value of the tail index & characterizes the shape of the distribution.
Here, ogpp is fixed to 1.

1.004
0.75
Tail index
— = -0.5
< 0.25
2 —
@ 0.50
g — )
o = 0.25
= 0.5
0.25
0.00
0 1 2 3 4 5
X
[m] = = =




Peaks-over-threshold stability

By analogy with of GEV limit distributions for maxima, we have
for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that Y ~ GPD(&,06pp). Consider a new, higher threshold & > 0 such that
GPD(&; ¢, 06pp) < 1. Then

Y —i| (Y > id) ~GPD(E,66pp), F6pp = ogpp + &

Exercice: Prove this using pencil 4+ paper by showing

1 - GPD(id + y;§,06pD)

=1—GPD(y:&.6
1— GPD(d;&,06pp) GPD(y; ¢, 66pp)

= Application of the POT approach to a GPD yields again a GPD!

For £ = 0, where the GPD is the exponential distribution, the POT stability is also
known as the
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Point-process convergence

The of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies Xi, Xa,... of X ~ F, the following two statements are equivalent:

® The distribution F is in the maximum domain of attraction of the max-stable
distribution G with support A¢ ;5 , for the normalizing sequences a, € R and
b, > 0.

® For the normalizing sequences a, € R and b, > 0, we have the following
point-process convergence with a locally finite Poisson-process process limit:

{(’,X’b_a"), i:l,,..,n}—>{(t,-,P,-), i€ N} ~PPP(A\; X A), n— oo,
n n

with intensity measure A1 X A where A1 is the Lebesgue measure on (0, 1).

If 1) and 2) hold, then G(z) = exp(—A[z; c0)), and the

defined
on A¢ o, is characterized by its tail measure
—1/¢
il L gz=e , 0
A[z,00) = —log G(z) = ( f_" ) &7 g pER, o>0.
exp <Tu> 9 £E=0

Remark: A is singular at inf A¢ 5 .
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Summary: The extreme-value trinity

We allow for affine-linear rescaling )~(,- = % of the iid sample X;, i=1,...,n
Maxima Occurrence counts Threshold exceedances
NE) =10
Pr(max?_; X; < z) Pr(N(E) = k) — Pr(X; —u>y | X; > u)
— exp (—A[z, 00)) exp(— (M x A)(E)) QrxME” — Ay, 00)/A[u, o0)

N possessing
for any event E and ¢ > 0, there are constants a(c) 6 R, B(c) > 0 such that

¢ x A(E) = A (Eg(ij)(c))




© Representations of dependent extremes using maxima and point processes
Introduction to dependent extremes
Componentwise maxima
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Spectral construction of max-stable processes
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Practical motivation for dependent extremes

Often, several variables are stochastically dependent,
for example in environmental and climatic data.

Examples:

e Different physical variables observed at the same location, such as minimum
temperature, maximum temperature, precipitation, wind speed.

e The same physical variable observed at different locations, such as precipitation
at different locations of a river catchment.

Many interesting aspects of dependent extremes:

° of extreme observations in several components
(example: cumulated precipitation = flood risk)

° and of environmental extreme events

° simultaneous failure of several critical components
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[llustration: a bivariate sample with dependence
Scatterplot of an iid bivariate sample X; = (X; 1, X;2), i =1,2,...,n.
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A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are
structurally quite similar.

For indexing the variables of interest,

e we can either put focus on the multivariate aspect and use indices 1,...,d for
the d components of a random vector

(Xlz"'7Xd)

(and we can write D = {1,...,d} for the domain),

e or we put focus on the process aspect (for example, when working with a random
field on a nonempty domain D C R¥) and use notation such as

{X(s), s € D}

for the whole process, or
(X(s1),- -, X(sa))

for the multivariate vector of variables observed at d locations si,...,s; C RX.

When the distinction is important, we point it out explicitly (for example, for
“functional convergence” in a space of functions with continuous sample paths defined
over a compact domain D).
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Componentwise maxima of random vectors
Consider a sequence of iid random vectors

d
Xi=(Xi1,...,Xj,4) = X ~ Fx,
where Fx is the joint distribution of the components of X:

Fx(x) = Fx(x1,...,xq) = Pr(X1 < x1,..., Xy < xq)

The
M, = (Mp1,..., My q) = (mnalxxi,h cey m%fxi,d)
1= =

has distribution Fg, that is, for x = (x1, ..., x4),

F;(X) = (Fx(X))" = Pr(X,-,l S X1y .- .,X,',d S Xd = 1, ey n)

A\ The componentwise maximum M, can be composed of values X; ; with different
indices i.
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Illustration: bivariate componentwise block maxima
A bivariate series X; = (Xj 1, Xj2) (with strong cross-correlation) and its
componentwise maxima within the blocks separated by red lines. Most but not all of
the maxima occur at the same time in the two series.
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Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (d-dimensional) distribution G is called if there exist
deterministic vector sequences oy = (ap,1,...,Qn,q) and Bn = (Bn,1,--.,Bn,d) > 0,
n € N, such that

G"(an+ Bnz) = G(z), z¢€ RY.

If all finite-dimensional distributions of a stochastic process Z = {Z(s),s € D C R¥}
are max-stable, we call Z a

Equivalently, if X; ~ G, then the componentwise maximum over n iid copies of X;
satisfies

Mi—an d y  Len
Bn ’ '

/\ Multivariate max-stability is stronger than max-stability of the univariate marginal
distributions.
o If Z=(2Zy,...,2Z4) ~ G with Z; ~ G;j, then the univariate marginal distributions
G; are max-stable:

GJ(ZJ) = GEV(Zj;fjvﬂjvaj) = PI‘(ZJ < Zj) = G(OO,...,OO,ZJ',OO,...,OO).

e Additionally, max-stability of G implies a stability property for the dependence
structure.
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Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction

If there exist deterministic normalizing vector sequences a, = (ap,1,...,an,q) and
by, = (bn,1,...,bng) >0, n €N, such that the following convergence holds,
M, — a
% —Z=(4,...,249)~G, n— oo,
n

where Z has non-degenerate marginal distributions, then G is a
, that is, a

If all finite-dimensional distributions of a process X = {X(s), s € D C R} satisfy the
above convergence, then Z = {Z(s),s € D C R} is a .

(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of
finite-dimensional distributions. There also exist results for convergence in spaces of
continuous functions over a compact domain D.



Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the
marginal distributions F; of X; and G; of Z;.

e Often, the is used:
. 1
G (z) =GEV(z; (=1, pu=1,0=1) =exp - ) z>0.

e We can transform any continuous random variable X ~ F towards a variable with

unit Fréchet distribution as follows: X* = — —L - ~ G*.
log F(X)

1
o If Xj ~ GEV(€, 1, 0), then X7 = (1 +§X—“) 5 G

o J

e If G is a multivariate max-stable distribution, we write G* for the corresponding
max-stable distribution with unit Fréchet margins. We call G* a

We call representations if they are based on the marginal x-scale.
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Simple Maximum Domain of Attraction

. . _u\Y¢€
We use the following notation: T¢ , ,(z) = (1 + 5%) .

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector X ~ Fx. The following two statements are equivalent:
® The distribution Fx is in the MDA of a multivariate max-stable distribution G.

® The following two properties hold jointly:

@ Marginal convergence: Each component X; is in the univariate MDA of a
GEV(&j, ), oj) distribution.

® Convergence on the standardized scale: The distribution of the marginally
standardized random vector

X* = (X7, ..., XJ) ~ Fxx

satisfies
Fyx(nz) =& G*(z), n — oo,

i.e., Fx« is in the MDA of G*, where
G(z1,...,24) = G*(T§1>H1101 @)yccoy Tﬁdaﬂd,ad(zd))'

With standardized marginal distributions, we can choose normalizing vector sequences
ay =(0,...,0) and b} = (n,...,n).
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Some remarks about max-stable dependence

e There is no exhaustive representation of all simple max-stable distributions G*
using a finite number of parameters.

e We can write G* using the X
G*(2) = exp(—V*(2)), z>0,

where t x V*(tz) = V*(z) ( ).

e We say that two variables Xj and X5 are if
G(z1,22) = Gi(z1) X Ga(2z2),
and in this case

G*(z1,22) = exp(—(1/z1 + 1/22)) = exp(—1/z1) x exp(~1/2z), z1,22>0.
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Example: multivariate logistic distribution
A large variety of parametric multivariate max-stable distribution has been proposed.

The was introduced by Emil J. Gumbel in 1960 and can
be defined through its exponent function

V*(z) = (zl_l/a+..‘+zd_l/&>a, z>0,

such that

G*(zl,...,zd):exp(f <zl_1/a+...+zd_1/a>a>, z>0

with parameter 0 < o < 1 and
e perfect dependence for a — 0;

e independence for a = 1.
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Example: Simulations of bivariate logistic distribution

Sample size n = 500

Bivariate scatterplots show log Z* (standard Gumbel margins) with Z* ~ G*




Example: Huesler—Reiss distribution

are related to multivariate Gaussian distributions.
Consider a multivariate Gaussian vector Y.

Bivariate case: the simple max-stable distribution has parameter
~v12 = Var(Y2 — Y1) > 0 and for z;,z > 0,

vz ! Iogﬁ) 1¢'(m ! lo Zl))

1
G*(z1, z :exp(——d)( + + g —
( 1 2) z1 2 VY12 z 2 /Y12 z2

z2

(with standard Gaussian cdf )
= independence for y12 — oo, perfect dependence for v12 — 0

The general multivariate distribution G* is parametrized by d(d — 1)/2 variogram
values v; j, = Var(Yj, — Y};) for 1 < ji < o < d.
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Example: Simulations of the Huesler—Reiss distribution

Sample size n = 500
Relatively weak dependence

log Z* (Gumbel margins) Z* (Fréchet margins)

300
I

Z;
200
I

-2 0 2 4 6 8 -100 0 100 200 300
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Example, cont'd

Sample size n = 500
Relatively strong dependence

log Z* (Gumbel margins) Z* (Fréchet margins)

Z;

100
I

500
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Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies X1, X2, ... of a random vector X = (X, ...,Xy) ~ F, the following
two statements are equivalent:
® The distribution F is in the multivariate MDA of the max-stable distribution G
for the normalizing sequences a, € R? and b, > 0.

@ For the normalizing sequences a, € R? and b, > 0, we have the following
point-process convergence with a locally finite Poisson point process limit:

X —
{’Ta”, i:l,...,n}a{P;, i € N} ~ PPP(A), n— oo,
n

with intensity measure A.
If 1) and 2) hold, then G(z) = exp(—V/(z)) with

V(z) = A ((~00,2),

where the is defined on Ay = (Zgl,mygl X ... X ng,#dﬁc) \ Uy,

with the marginal GEV parameters &, i1j, 07, j = 1,...,d, where the lower endpoint
Us = (ian&,m,Uv cr ianid,HmUd)

is excluded.



Simple representation with standardized margins
Specifically, the convergence of componentwise maxima and of point patterns is
equivalent on the simple scale using standardized marginal distributions in X*.

Recall: Standardized marginal scale

. XJ.* = —1/log Fj(X;) (or any other probability integral transform ensuring Xj* >0
and x X Pr(X > x) — 1 as x = o0)

e Normalizing sequences on standardized scale are a, = 0 and b, = (n, ..., n)
e GEV margins of G* are unit Fréchet GJ*(ZJ) =exp(—1/z), z >0 (§ =1,
}Lj = 1, O’j = 1)

Simple exponent measure and homogeneity (asymptotic stability)
For any Borel set B C Aj, the satisfies
A(B) = A*(Bi,u,cr)

where Be o = {(Te; 1,00 (51)s - -+ Tegougoq(Xd)) | (x1,-..,x4) € B} . The simple
measure A* is defined on Apx = [0,00)9 \ 0 and is , that is, for
any Borel set B C Apx, we have

t x A*(tB) = N*(B), t>0.
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Bivariate illustration of asymptotic stability

Simple scale

(D={1,2})
(5 = (17 1)7“ = (17 1)70' = (1’ 1))

o = (”, ")v Bn = (an)
nx N*(nB) = A*(B)

Standard exponential scale

(E = (07 0)7“ = (07 0)70' = (1’ 1))

an, = (1,1), By = (log n,log n)
n x A(log(n) + B) = A(B)

log(n) +B
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The trinity: three classical multivariate formulations

e The trinity of the three classical limit also holds in the multivariate setting.

o For threshold exceedances, a standard approach is to condition on an exceedance
in at least one of the d components.

e To avoid technical notation, we focus on the

Theorem
The following three convergences are equivalent:

e Point-process convergence:

X*
{ L i:1,...,n}—>{P,*, i € N} ~ PPP(A*), n— oo.
n

e Convergence of componentwise maxima:

*
D s Z*~ G*, n— oo,
n

with G*(z) = exp(—V*(z)) where V*(z) = A* ([0, 2]€) .

o Peaks-Over-Threshold convergence:

A*(- n[0,1])
A (0,1]%)

X* d
—|<.alij*>u)%Y*~ u — oco.
u =
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Remarks about the functional setting

e The trinity of limits also holds in the functional setting
(e.g., Dombry & Ribatet, 2016).

e Usually one considers X € C(D) with compact domain D.

e One has to appropriately define weak convergence in a Banach function space.
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The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process { P}, i € N} with simple ((—1)-homogeneous) intensity
measure A* can be constructed as follows:

{P7(s), i € N} = {R;W;(s), i € N}

where R; = 1/U; and
e 0 < U; < U < .... are the points of a unit-rate Poisson process on [0, c0), and

o W; = {W,(s)} are iid nonnegative random functions, independent of {U;}, with
EW;(s) = 1 and EW;(s)'*¢ < oo for some ¢ > 0.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process Z* can be constructed as
Z*(s) = max R;W;(s
() = max R Wi(s),

and any such construction is a simple max-stable process.



[llustration: simple max-stable construction

e In gray, “points” P} of the Poisson process on D = [0, 5]
e Max-stable process is the componentwise maximum (in black)

10
|

z*(s)
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Simulation based on the spectral representation

If it is simple to simulate from the distribution Fyy of the spectral process W, we can
draw samples from the simple max-stable process Z*.

Exact simulation

If P(W; < wp) =1 for some threshold value 0 < wp < o0, j =1,...,d, then we can
perform (even if ZJ.* = max;en R;Wj; is defined as a maximum
over an infinite number of components):

@setm=1

@® generate Ep, ~ Exp(1)

© generate Wy, = (W1, ..., W)™ ~ Fuy

© set Z* = (Zf,...,Z;)" with ZF = maxi=1,...,m Z' g forj=1....d

©IF % <minj,..4Z" RETURN Z*
k*l
ELSE set m=m+1 and GO TO 2

Remarks:

e If the distribution of W; is not finitely bounded, we can fix wp such that
P(W; > yo) becomes very small and perform approximation simulation.

e Even with unbounded W;, exact simulation remains possible for many models
using different algorithms (see the review of Oesting, Strokorb, 2022).
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Example: Log-Gaussian spectral processes

A possible construction uses a with variance
function o2(s) and sets

W(s) = exp(W(s) — o%(s)/2)

= A class of popular max-stable models:
o Multivariate:

e Spatial:

Remark: The distribution of the simple max-stable process Z* = {Z*(s), s € D}
depends only on the variogram

7(s1,2) = Var(W(sp) — W(s1)), s1,5 € D.
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Illustration: Simulation of Brown—Resnick processes

Two realisation of a spatial Brown-Resnick process
(obtained using the rmaxstab function of the SpatialExtremes package)
Simulation on a grid 20 x 20 (such that d = 400) in the square [0, 10]°.

lllustration: process log(Z*(s)) (with standard Gumbel margins)




O Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
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[llustration: Spatial co-occurrence of exceedances

Original spatial field

Excursion set above a high threshold




Assessing co-occurrences of threshold exceedances

Threshold exceedances can occur simultaneously,

e in different variables,
e at nearby locations,

e at close time steps.

Do co-occurrences happen by chance (independence),
or are they correlated in some way?

A simple and flexible exploratory approach

Idea: Study given as

Pr(X1 > u, Xo > u
Pr(X2>u\X1>u):W

)

and assess how they change with increasing u and for different pairs,
for instance with respect to temporal lag or spatial distance.
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Tail correlation coefficient

Consider a bivariate random vector (X1, X2) with X1 ~ F; and Xz ~ Fo.

Tail correlation
Consider the conditional probability

Pr(F2(Xz) > u, F1(X1) > u)

x(u) = Pr(Fa(X2) > u | Fi(X1) > u) = Pr(F (%) > 1)

)

We define the following limit (if it exists):

X = J[)nl X(”) € [07 1]

The coefficient x symmetric with respect to X; and X, and is known as

. We say that
e X; and X5 are if x > 0;
e X; and X5 are if x =0.

u€e(0,1).

or
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Link between tail correlation and max-stability
We have

Pr(X} >z, X} > z)
= lim Pr(X} >z | X{ > z) = i L 72
X = M PG > 21X > 2) = lim T s )

(*)
Assume that (X1, X2) is in the MDA of G. The bivariate max-stable convergence
Fixg xz)(nz, nz)" — G*(z,z), z>0,
is equivalent to
1= Fixp,xz)(nz,nz) = — log G*(nz,nz), for large n.
By using
Pr(X{" >z, X3 > z) = (1 - Fx;(2)) + (1 = Fx; (2)) — (1 = Fixp xz)(2, 2)),

V*(1,1)
nz

and —log G*(nz, nz) = and 1 — GJ.*(nz) ~ 1/(nz) in (%), we obtain

X =2-—V*(1,1).
Remark: asymptotic independence corresponds to classical independence in the

max-stable limit distribution. We have x = 0 if and only if V*(1,1) =2, and in this
case V*(z1,22) =1/z1 4+ 1/z3 for z1,20 > 0, and G*(z1, ) = G{(z1) X G} (2).



[llustration: empirical tail correlation
Data setting: n = 200, u = 0.9. R
Blue points: exceedances of empirical distribution function F1(X1) above u.
Red points: exceedances of F»(Xy) above u given that F1(X;) is above u.
Empirical tail correlation: {(u) = % =0.3.
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Tail autocorrelation function (Extremogram)
Consider X(s) ~ F with index s € Rk,
What is the tail correlation at a given distance h = As > 07
For h > 0, we consider the conditional exceedance probability
_ Pr(F(X(s+ h)) > u, F(X(s)) > u)

x(h;u) =Pr(F(X(s+ h)) > u| F(X(s)) > u) = PrFX(3) > 1) ,

for u € (0,1).

We define the as the limit (if it exists)

x(h) = lim x(h; u) € [0,1].

e By definition, x(0) = 1.
o Usually, x(h) decreases as ||h|| increases.

e x(h) is also called or
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[llustration: Empirical (temporal) extremogram
Top row: temporal independence in X(t); bottom row: asymptotic dependence
Left column: u = 0.95; right column: u = 0.99
Dashed red line corresponds to theoretical x(h; u) for independence.
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Summary measures for more than two variables
Consider d random variables X1, Xa,..., Xy with d > 2 and X; ~ F;.

Extremal coefficient (maxima)

The following limit (if it exists) is called

u— oo

04 = lim uxPr('max XJ-*>u)
J=1,...,
o Hd: V(l,“.,l)
e O =2—x.
o Interpretation: d/6,; = of jointly extreme events
e With MDA convergence, we have G*(z*,...,z*) = exp(—0,/2z*), z* > 0.

Tail dependence coefficient (minima)
The following limit (if it exists) is called
Ag = lim Pr( min Xj*>u\X1*>u) = lim u><Pr( min  X* > u
J d u—o0 j

u—oco J=1,....d

Sllgooag

e For d =2, we have Xy = x.

e Extremal coefficients and tail dependence coefficients are linked through
inclusion-exclusion formulas using coefficients for d = 2,...,d.



So far...

e Summary measures for co-occurrences of threshold exceedances

e Focus on minima and maxima of the components of X*

Next...

e More flexibility through more general risk functionals

o Generative and parametric models, not only summaries
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Multivariate and functional threshold exceedances

Consider x € RP for a compact domain D C R with [D| > 1.
Note: for a vector x = (x1,...,%4), we can set D = {1,...,d}.

No unique definition of threshold exceedances = Use a r

Extreme event occurs if r(x) > u with high threshold u

Bivariate illustrations:

Maximum Average Fixed component
r(x1, x2) = max(xi, x2) r(xi,x2) = x1 + x2 r(xi, x2) = x1
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Many relevant choices for risk functionals

To formulate asymptotic theory,
we use

r:[0,00)P = [0,00), r(txx)=txr(x)

and we apply r on the simple scale.
We further assume continuous realizations: x € C(D).

There is also notation £ (for loss) instead of r (for risk).

Examples for D = {1,2,...,d}

.. . _ . d )
e Minimum: r(xi,...,xq) = mint_; x;
o Maximum: r(xq,...,xq) = maxd_; x;
o k' order statistics: r(X1,...,X4) = kth smallest value among x1, ..., Xq
e Specific component: r(xi,...,Xxg) = Xj,
o Arithmetic average: r(xi,...,xq) = % Zle Xj
) Y 1/d
o Geometric average r(xi,...,Xq) = (Hj:I xj>
1/p
e Any norm, such as r(xi,...,xq) = ( le xf)
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Comparison of arithmetic and geometric average

Arithmetic average:
14
(X, xd) =5 %
d =

Geometric average:
1/d

d
riasoxa) = | [
j=1

e Constant values x; = ... = x4 = Geometric = Arithmetic average

e Stronger variability in values x; leads to relatively lower Geometric average
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How to standardize marginal distributions
(recall 4 extension)
Given X; ~ F; with continuous distribution function F;, we apply a probability integral
transform to a standardized scale Xj* satisfying
° XJ.* >0, and

® x x Pr(X* > x) — 1 as x — oo, which means Pr(X* > x) ~ 1/x for large x

Two common choices

* Unit Fréchet scale: X = —éF(j(Xj))
(makes sense when working with maxima since the unit Fréchet is a GEV)
e Standard Pareto scale: X =1/(1 — F;(X;))

(makes sense when working with exceedances since the standard Pareto is a GPD)

Interpretation of Xj* as the (approximate) return period of X;:
for an independent copy X; of X;, we get
1

X*
J

Pr(X; > X; | X;) = for relatively large X;

(Note: If Pr(A) =1/T, then the event A has a return period of T time units)



Limits conditional to risk exceedances r(X) > u

r-Pareto limit processes (Dombry & Ribatet 2015)
Consider a random element X = {X(s),s € D} C C(D) with compact domain D.

e If we have the following (weak) convergence in C(D),
x*
— | (r(X*)>u) — Y, u— oo,
u

then Y, is an ,
satisfying

Y,
(V) >u) LY, foranyu> L.
u

o r-Pareto processes are characterized by a

Y,
Y, =RxV, R=r(Y,)~ standard Pareto, V=—— R LV
r(Yr)

= Above high thresholds u, scale r(X*) and profile X* /r(X*) become independent!
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Link to other limits

e Trinity of limits:

Convergence of componentwise maxima
<~
Point-process convergence
<~
r-Pareto convergence for r = sup

e r-Pareto convergence for sup =- r-Pareto convergence for all r

e The probability measure of the r-Pareto process Y, is

A (- NA)

Y, ~
' A (Ar)

with A, = {y € C(D) | r(y) > 1}

e Consider the simple point-process limit {P}, i € N}
= Construction of r-Pareto processes = Extraction of r-exceedances:

Pr(r(P)>1) £ v,
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[llustration: Simulation of r-Pareto processes

e Same realizations of the Poisson point process in all three displays
e Colors correspond to 3 most extreme risks for different risk functionals r

e lllustrations are on the log((-)*)-scale (Gumbel scale)

r = Value at fixed location r = Geometric Average

r = Arithmetic Average




Example: Geometric average risk for Brown—Resnick
models
The popular and have log-Gaussian profile
processes V for r chosen as the geometric average.
This is very convenient for statistical methods!
Recall: Poisson process has construction {P?(s)} = {R; exp(Wi(s) — 0%(s))} with a
centered Gaussian process W with variance function o2(s)

Log-Gaussian profile processes for r = Geometric average

Given the Pareto process Y, = R X V, we have

log V/(s) W(s) — W — const(s; I

with
e a centered Gaussian process W = {W(s), s € D} and its spatial average W,

e a constant const(s; "), explicit in terms of the semivariogram matrix

I ={v(s1,52), 51,52 € D},

of W.
(Result follows from Engelke et al. 2012; Dombry et al. 2016; Engelke et al. 2019)
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Semivariograms for log-Gaussian profile processes

Recall: The log-profile process is

log V(s) = W(s) — W — const(s; ")

Same semivariograms of the log-profile log V and the original Gaussian process W

Hog (st %) = 2V llog V(2) — log Vi(s1)] = 2V [Wi(s2) — W(s1)] =g s1,52)

= Classical variogram analysis becomes possible for log V!

78/89



@ Introduction

@® Univariate Extreme-Value Theory

© Representations of dependent extremes using maxima and point processes

@ Representations of dependent extremes using threshold exceedances

Application example: spatial temperature extremes in France

@ Perspectives

79/89



Gridded temperature reanalysis data

e Daily average temperature reanalysis of Météo France
(SAFRAN model at 8km resolution)

e Study period 1991-2020

e Focus on summer temperatures (June-September)

Modeling approach

e Marginal transformation to standard Pareto

o We fit separate r-Pareto models for separate administrative regions
e Daily risk exceedances using Geometric Average of return periods
e Temporal declustering with runs method for the risk series r(X})

o Maximum likelihood using log V with a stable covariance function in W
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Scale ogp(s)
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Results: Estimated extremal variograms

Based on the stable covariance function

Cov(Distance) = SD? x exp (—(Distance/ScaIe)Shape)

(for Distance = ||As|| = ||s2 — s1]])

and maximum likelihood estimation using observations of log V
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Results: Estimated tail correlations

Xx(s,s+As) = ul_l)rr;o Pr(XP(s+As) > u| XP(s) > u)=2 (1 —-¢ (M))
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Results: Empirical /parametric extremal variograms

e Empirical (in dashed lines) and fitted parametric variograms
A\ Parametric estimates exploit also the Gaussian mean const(s; I')

o Generally satisfactory fit

e During extreme heat days, stronger spatial variability in the Southern regions

North South Atlantic Coast
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Statistical aspects of extreme-value analysis

In practice, we typically have observations of a sample Xi, ..., X, with n fixed.

e Most approaches exploit one of three classical representations:
block maxima; threshold exceedances; point patterns.

o Peaks-over-threshold methods offer high flexibility, especially by using risk
functionals for dependent extremes.

e We assume that extreme-value limits provide a good approximation for large n or
high threshold wv.

° in statistical estimation:

Higher threshold or Larger block <> Less bias but higher variance

e Rough distinction between likelihood-based (parametric) approaches and other
“semi-parametric” approaches

Likelihood approaches for dependent extremes usually require calculating A(A;)
for some risk region A,, which can be computationally very costly, or even
prohibitive if |D| is large.
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Important topics in current extreme-value research
Types of extreme events:

o Application of risk functionals r directly to X and not to standardized X*

e Improved analysis of , especially for applications to

° (in the climate and risk literature)

o Aggregation of not necessarily extreme components leads to extreme impacts

e Example: Persistence of relatively high temperatures and low precipitation leads to
extreme drought conditions

° that is not stable at observed levels

= Non-asymptotic representations and statistical garantuees?

Methods and algorithms:

. for extreme events

° of algorithms to large datasets, such as climate-model simulations



Some literature for further reading

Theory and probabilistic foundation:

e Resnick (1987). Extreme Values, Regular Variation and Point Processes.

Statistical modeling:

e Coles (2001). An introduction to statistical modeling of extreme values.

Mix of both:

e Embrechts, Kliippelberg, Mikosch (1997). Modelling extremal events: for
insurance and finance.

e de Haan, Ferreira (2006). Extreme-value theory: an introduction.

A review of available software (R-based):

o Belzile, Dutang, Northrop, Opitz (20234). A modeler’s guide to extreme-value
software. https://arxiv.org/abs/2205.07714
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