An introduction to extreme-value theory

Thomas Opitz

BioSP, INRAE, Avignon

Short course at the Stochastic Geometry Days

Dijon, 12-13 June, 2023

Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

- Theory for univariate extremes
- Theory for dependent extremes based on maxima and point processes
- Theory for dependent extremes based on threshold exceedances

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processe

Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

The origins of Extreme-Value Theory (EVT)

- A probabilistic theory with its origins in the first half of the 20th century:
 - Fréchet (1927). Sur la loi de probabilité de l'écart maximum. Annales de la Société Polonaise de Mathématique.
 - Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. *Proceedings of the Cambridge Philosophical Society*.
 - von Mises (1936). La distribution de la plus grande de n valeurs. *Revue Mathématique de l'Union Interbalcanique*
 - Gnedenko (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of Mathematics.
- Strong development of multivariate and process theory since the 1970s

Statistical methods and applications

- Often at the origin of theoretical developments (for example, Tippett's work for the cotton industry)
- Seminal monograph Statistics of Extremes (1958) of Gumbel
- Numerous applications since the 1980s
- Today, strong use for finance/insurance and climate/environment
- Typical goals:
 - · Estimate and extrapolate extreme-event probabilities
 - Stochastically generate new extreme-event scenarios

Extreme events

Extreme events are located in the upper or lower tail of the distribution:

Without loss of generality, we focus on the extremes in the upper tail. $z \to z = -2 \circ 2$

5/89

Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X_1, X_2, \ldots

Averages
$$\overline{S}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Central Limit Theorem

 $rac{\overline{S}_n-\mu}{\sigma_n} o Z \sim \mathcal{N}(0,1)$

Gaussian limit distribution (Sum-stability)

Spatial extension:

Gaussian processes

Geostatistics

Extremes (maxima) $M_n = \max_{i=1}^n X_i$

Fisher-Tippett-Gnedenko Theorem

$$rac{M_n-a_n}{b_n}
ightarrow Z \sim \operatorname{GEV}(\xi)$$
 (tail index $\xi \in \mathbb{R}$)

Extreme-value limit distribution (Max-stability)

Spatial extension:

Max-stable processes

Spatial Extreme-Value Theory

The trinity of the three fundamental approaches

Three asymptotic approaches to study extreme events in an i.i.d. sample $\{X_i\}$:

- **1** Block maxima: $M_n = \max_{i=1}^n X_i$ using blocks of size n
- **2** Threshold exceedances above a high threshold u: $(X_i u) \mid X_i \ge u$
- **3** Occurrence counts: $N(E) = |\{X_i \in E, i = 1, ..., n\}|$ for extreme events E

Asymptotic theory

For

- increasing block size n,
- for increasing threshold u, and
- for more and more extreme event sets E,

we obtain coherent theoretical representations across the three approaches.

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes

- Componentwise maxim
- Point processes
- Spectral construction of max-stable processes

Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

2 Univariate Extreme-Value Theory Maxima

Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

The maximum of a sample

For a series of independent and identically distributed (iid) random variables

$$X_i \sim F$$
, $i = 1, 2, \ldots$

we consider the maximum

$$M_n = \max_{i=1}^n X_i \sim F^n,$$

where

 $F^n(x) = (F(x))^n.$

The fundamental extreme-value limit theorem

Fisher-Tippett-Gnedenko Theorem

Let X_i , i = 1, 2, ... iid. If deterministic normalizing sequences a_n (location) and $b_n > 0$ (scale) exist such that

$$rac{M_n-a_n}{b_n} \stackrel{d}{
ightarrow} Z \sim G, \quad n
ightarrow \infty, \quad (\star)$$

with a nondegenerate limit distribution G, then G is of one of the three types of extreme-value distributions:

- (Reverse) Weibull: $\tilde{G}(z) = \exp(-(-x)^{-\alpha}_+)$ with $\alpha > 0$ (with support $(-\infty, 0)$)
- Gumbel: $\tilde{G}(z) = \exp(-\exp(-x))$ (with support \mathbb{R})
- Fréchet: $\tilde{G}(z) = \exp(-x_{+}^{\alpha})$ with $\alpha > 0$ (with support $(0, \infty)$)

Remarks:

- Being of a certain type means being equal up to a location-scale transformation: $G(z) = \tilde{G}(a + bz)$ with some b > 0, $a \in \mathbb{R}$. We can always choose a_n, b_n such that $G = \tilde{G}$.
- If convergence (*) holds, we say that F is in the maximum domain of attraction (MDA) of G.
- Equivalently to (*), we have $F^n(a_n + b_n z) \to G(z), \ n \to \infty, \ z \in \mathbb{R}.$

Sketch of the proof (1)

A key ingredient is the Extremal-Types Theorem, here copied from Embrechts, Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko & Kolmogorov (1954).

Extremal-Types Theorem

Let A, B, A_1, A_2, \ldots be random variables and $b_n > 0$, $\beta_n > 0$ and $a_n, \alpha_n \in \mathbb{R}$ be deterministic sequences. If the following convergence holds,

$$\frac{A_n-a_n}{b_n}\stackrel{d}{\to} A, \quad n\to\infty,$$

then the alternative convergence

$$\frac{A_n - \alpha_n}{\beta_n} \xrightarrow{d} B, \quad n \to \infty, \tag{1}$$

holds if and only if

$$\frac{b_n}{\beta_n} \to b \in [0,\infty), \quad \frac{a_n - \alpha_n}{\beta_n} \to a \in \mathbb{R}, \quad n \to \infty.$$

If (1) holds, then $B \stackrel{d}{=} bA + a$ with a, b being uniquely determined. Moreover, A is nondegenerate if and only if b > 0, and the A and B are said to belong to the same type.

Sketch of the proof (2)

In the following, all convergences are understood for $n \to \infty$.

• If the convergence $F^n(a_n + b_n z) \rightarrow G(z)$ holds, then for any t > 0,

$$F^{\lfloor nt \rfloor}(a_{\lfloor nt \rfloor} + b_{\lfloor nt \rfloor}z) \to G(z), \quad z \in \mathbb{R}.$$
 (2)

Observe that

$$F^{\lfloor nt \rfloor}(a_n + b_n z) = (F^n(a_n + b_n z))^{\lfloor nt \rfloor/n} \to G^t(z).$$
(3)

(e) Using the Extremal-Types Theorem, there exist deterministic functions $\gamma(t) > 0$ and $\delta(t)$ such that

$$rac{b_n}{b_{\lfloor nt
floor}} o \gamma(t), \quad rac{a_n - a_{\lfloor nt
floor}}{b_{\lfloor nt
floor}} o \delta(t), \quad t > 0.$$

By considering (2) and (3), we get

$$G^t(z) = G(\delta(t) + \gamma(t)z), \quad t > 0.$$

4 A consequence of the last equality is that for s, t > 0,

$$\gamma(st) = \gamma(s)\gamma(t), \quad \delta(st) = \gamma(t)\delta(s) + \delta(t).$$

6 The solutions of this functional equation are given by the three distribution functions of the reverse Weibull, Gumbel and Fréchet type.

Generalized Extreme-Value distribution (GEV)

The Generalized Extreme-Value distributions (GEV) uses threes parameter to jointly represent all possible limit distributions *G*:

$$G(z) = \operatorname{GEV}(z; \xi, \mu, \sigma) = \exp\left(-\left[1 + \xi \frac{z - \mu}{\sigma}\right]_{+}^{-1/\xi}\right) \quad (\star\star)$$

- Shape parameter (or tail index) $\xi \in \mathbb{R}$, determining the extremal type:
 - Reverse-Weibull MDA for $\xi < 0$
 - Gumbel MDA for $\xi = 0$
 - Fréchet MDA for ξ > 0
- Location parameter $\mu \in \mathbb{R}$
- Scale parameter σ > 0

For $\xi = 0$, (**) is the limit for $\xi \to 0$: $G(z) = \exp(-\exp(-(z-\mu)/\sigma))$, $z \in \mathbb{R}$.

The (...)₊-operator in (**) means that the distribution G has positive density dG/dz for values z satisfying $1 + \xi \frac{z-\mu}{\sigma} > 0$

$$\Rightarrow \text{ Support of the GEV: } A_{\xi,\sigma,\mu} = \begin{cases} (-\infty, \mu - \sigma/\xi), & \xi < 0, \\ (-\infty, \infty), & \xi = 0, \\ (\mu - \sigma/\xi, \infty), & \xi > 0. \end{cases}$$

Illustration: GEV densities

In the MDA convergence (*), we can always choose the normalizing sequences a_n , b_n such that $\mu = 0$, $\sigma = 1$, as for the probability densities shown below.

The three types have very different upper tail structure:

- Reverse-Weibull for $\xi < 0$: light tails with finite upper endpoint (GEV finite upper endpoint is $\mu \sigma/\xi$)
- Gumbel for $\xi = 0$: exponential tail
- Fréchet for $\xi > 0$: power-law tails, i.e., heavy tails

Empirical illustration

Histograms of i.i.d. samples X_i , i = 1, 2, ..., n, with different tail index ξ .

Examples of MDAs of common distributions:

- $\xi > 0$: Pareto ($\xi = 1/\text{shape}$), student's t ($\xi = \text{shape}$)
- $\xi = 0$: Normal, Exponential, Gamma, Lognormal
- $\xi < 0$: Uniform ($\xi = -1$), Beta

Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with cdf $F(x) = 1 - \exp(-x)$, x > 0. The distribution F^n of the maximum $M_n = \max_{i=1}^n X_i$, where $X_i \stackrel{iid}{\sim} F$, i = 1, ..., n, is

$$F^n(x) = (1 - exp(-x))^n.$$

Can we find a_n and b_n such that $\lim_{n\to\infty} F^n(a_n + b_n x)$ exists and is nondegenerate?

For $x > -\log n$,

$$F^{n}(\log n + x) = (1 - \exp(-(\log n + x))^{n} = \left(1 - \frac{\exp(-x)}{n}\right)^{n}$$
$$\to \exp(-\exp(-x)), \quad n \to \infty$$

Conclusion:

- Using $a_n = \log(n)$ and $b_n = 1$, we obtain $\lim_{n\to\infty} F^n(a_n + b_n x) = \exp(-\exp(-x))$ for any $x \in \mathbb{R}$.
- The exponential distribution is in the maximum domain of attraction of the standard Gumbel distribution, i.e., the GEV with $\xi = 0$, $\mu = 0$, $\sigma = 1$.

Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:

Class of extreme-value limit distributions G =Class of max-stable distributions

Max-stable distribution

A probability distribution G is called max-stable if for any $n \in \mathbb{N}$ there exist appropriate choices of deterministic normalizing sequences α_n and $\beta_n > 0$ such that

 $G^n(\alpha_n + \beta_n z) = G(z), \text{ for any } n \in \mathbb{N}.$

This also means that the MDA limit (\star) is exact (and not asymptotic) if F is max-stable.

2 Univariate Extreme-Value Theory Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

Threshold exceedances in a univariate sample

What are possible limits for threshold excesses

$$X - u$$
 given $X > u$?

20/89

Generalized Pareto limits for threshold exceedances

Consider iid X, X_1, X_2, \ldots where $X \sim F$ with upper endpoint $x^* = \sup\{x \in \mathbb{R} : F(x) < 1\} \in (-\infty, \infty]$.

Pickands-Balkema-de-Haan Theorem

Suppose that $M_n = \max(X_1, \ldots, X_n)$ converges to a GEV (ξ, μ, σ) distribution according to the Fisher–Tippett–Gnedenko theorem. Equivalently, there exists a scaling function $\sigma(u) > 0$ such that

$$(X-u)/\sigma(u) \mid (X > u) \quad \rightarrow \quad Y, \quad u \to x^*,$$

and Y follows the Generalized Pareto Distribution $\text{GPD}(\xi, \sigma_{GPD})$ given as

$$\operatorname{GPD}(y;\xi,\sigma_{GPD}) = \Pr(Y \le y) = 1 - (1 + \xi y / \sigma_{GPD})_+^{-1/\xi} \quad y > 0,$$

with scale parameter $\sigma_{GPD} > 0$.

- This result dates back to the 1970s.
- As before, the case $\xi = 0$ is interpreted as the limit for $\xi \to 0$:

$$\operatorname{GPD}(y; 0, \sigma_{GPD}) = 1 - \exp(-y/\sigma_{GPD}), \quad y > 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

(= Exponential distribution).

Sketch of the proof

We here sketch the proof of " \Rightarrow "

(Convergence of maxima leads to convergence of threshold excesses).

• Set $u_n = a_n + b_n \tilde{u}$ for \tilde{u} chosen in the support of the $\text{GEV}(\xi, \mu, \sigma)$. Then,

$$\Pr((X - u_n)/b_n > y \mid X > u_n) = \frac{1 - F(a_n + b_n(y + \tilde{u}))}{1 - F(a_n + b_n\tilde{u})}.$$
 (4)

2 On the one hand, the MDA condition $F^n(a_n + b_n z) \rightarrow G(z)$ implies

$$\log F(a_n + b_n z) \approx \frac{1}{n} \log G(z)$$
, for large *n*.

On the other hand, since $F(a_n + b_n z) \approx 1$ as *n* increases, we can use the first-order approximation $\log(1 + x) \approx x$ for small |x|, such that

$$\log F(a_n+b_nz)\approx F(a_n+b_nz)-1.$$

Combining the two yields

$$1 - F(a_n + b_n z) \approx -\frac{1}{n} \log G(z).$$
(5)

8 By using the approximation (5) for the numerator and denominator of (4), we get

$$\Pr((X-u_n)/b_n > y \mid X > u_n) \to \frac{\log G(\tilde{u}+y)}{\log G(\tilde{u})} = 1 - \operatorname{GPD}(y; \xi, \sigma_{GPD}), \quad n \to \infty;$$

with $\sigma_{GPD} = \sigma + \xi(\tilde{u}-\mu) > 0$, and we can set $\sigma(u_n) = b_n$.

22/89

Illustration: GPD densities

The value of the tail index ξ characterizes the shape of the distribution. Here, σ_{GPD} is fixed to 1.

Peaks-over-threshold stability

オロト オポト オヨト オヨト ヨー ろくで

By analogy with max-stability of GEV limit distributions for maxima, we have Peaks-Over-Threshold (POT) stability for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that $Y \sim \text{GPD}(\xi, \sigma_{GPD})$. Consider a new, higher threshold $\tilde{u} > 0$ such that $\text{GPD}(\tilde{u}; \xi, \sigma_{GPD}) < 1$. Then

 $Y - \tilde{u} \mid (Y > \tilde{u}) \sim \text{GPD}(\xi, \tilde{\sigma}_{GPD}), \quad \tilde{\sigma}_{GPD} = \sigma_{GPD} + \xi \tilde{u}.$

Exercice: Prove this using pencil + paper by showing

$$\frac{1 - \operatorname{GPD}(\tilde{u} + y; \xi, \sigma_{GPD})}{1 - \operatorname{GPD}(\tilde{u}; \xi, \sigma_{GPD})} = 1 - \operatorname{GPD}(y; \xi, \tilde{\sigma}_{GPD})$$

 \Rightarrow Application of the POT approach to a GPD yields again a GPD!

For $\xi = 0$, where the GPD is the exponential distribution, the POT stability is also known as the lack-of-memory property.

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances

Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

Point-process convergence

The trinity of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X_1, X_2, \ldots of $X \sim F$, the following two statements are equivalent:

- **1** The distribution *F* is in the maximum domain of attraction of the max-stable distribution *G* with support *A*_{ξ,σ,μ} for the normalizing sequences *a_n* ∈ ℝ and *b_n* > 0.
- **@** For the normalizing sequences $a_n \in \mathbb{R}$ and $b_n > 0$, we have the following point-process convergence with a locally finite Poisson-process process limit:

$$\left\{\left(\frac{i}{n},\frac{X_i-a_n}{b_n}\right),\ i=1,\ldots,n\right\}\to\{(t_i,P_i),\ i\in\mathbb{N}\}\sim\operatorname{PPP}(\lambda_1\times\Lambda),\quad n\to\infty,$$

with intensity measure $\lambda_1 \times \Lambda$ where λ_1 is the Lebesgue measure on (0, 1).

If 1) and 2) hold, then $G(z) = \exp(-\Lambda[z;\infty))$, and the exponent measure Λ defined on $A_{\xi,\sigma,\mu}$ is characterized by its tail measure

$$\Lambda[z,\infty) = -\log G(z) = \begin{cases} \left(1 + \xi \frac{z-\mu}{\sigma}\right)^{-1/\xi}, & \xi \neq 0\\ \exp\left(\frac{z-\mu}{\sigma}\right), & \xi = 0 \end{cases}, \qquad \mu \in \mathbb{R}, \ \sigma > 0.$$

Remark: Λ is singular at inf $A_{\xi,\sigma,\mu}$.

Summary: The extreme-value trinity

We allow for affine-linear rescaling $\tilde{X}_i = \frac{X_i - b_n}{a_n}$ of the iid sample X_i , i = 1, ..., n.

Occurrence counts

$\Pr(N(E) = k) \rightarrow \\ \exp(-(\lambda_1 \times \Lambda)(E)) \frac{(\lambda_1 \times \Lambda)(E)^k}{k!}$ Poisson process

Threshold exceedances

Exponent measure Λ possessing asymptotic stability: for any event E and c > 0, there are constants $\alpha(c) \in \mathbb{R}$, $\beta(c) > 0$ such that $c \times \Lambda(E) = \Lambda\left(\frac{E - \alpha(c)}{\beta(c)}\right)$

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

8 Representations of dependent extremes using maxima and point processes Introduction to dependent extremes

Componentwise maxima Point processes

Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

Practical motivation for dependent extremes

Often, several variables are stochastically dependent, for example in environmental and climatic data.

Examples:

- Different physical variables observed at the same location, such as minimum temperature, maximum temperature, precipitation, wind speed.
- The same physical variable observed at different locations, such as precipitation at different locations of a river catchment.

Many interesting aspects of dependent extremes:

- Aggregation of extreme observations in several components (example: cumulated precipitation ⇒ flood risk)
- Spatial extent and temporal duration of environmental extreme events
- Reliability: simultaneous failure of several critical components

Illustration: a bivariate sample with dependence

Scatterplot of an iid bivariate sample $\boldsymbol{X}_i = (X_{i,1}, X_{i,2}), i = 1, 2, \dots, n$.

A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are structurally quite similar.

For indexing the variables of interest,

• we can either put focus on the multivariate aspect and use indices 1,..., *d* for the *d* components of a random vector

$$(X_1,\ldots,X_d)$$

(and we can write $D = \{1, \ldots, d\}$ for the domain),

• or we put focus on the process aspect (for example, when working with a random field on a nonempty domain $D \subset \mathbb{R}^k$) and use notation such as

$$\{X(s), s \in D\}$$

for the whole process, or

$$(X(s_1),\ldots,X(s_d))$$

for the multivariate vector of variables observed at d locations $s_1, \ldots, s_d \subset \mathbb{R}^k$.

When the distinction is important, we point it out explicitly (for example, for "functional convergence" in a space of functions with continuous sample paths defined over a compact domain D).

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes

Componentwise maxima

Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

Componentwise maxima of random vectors

Consider a sequence of iid random vectors

$$\boldsymbol{X}_i = (X_{i,1}, \ldots, X_{i,d}) \stackrel{d}{=} \boldsymbol{X} \sim F_{\boldsymbol{X}},$$

where $F_{\mathbf{X}}$ is the joint distribution of the components of \mathbf{X} :

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = F_{\boldsymbol{X}}(x_1, \dots, x_d) = \Pr(X_1 \leq x_1, \dots, X_d \leq x_d)$$

The componentwise maximum

$$\boldsymbol{M}_n = (M_{n,1}, \ldots, M_{n,d}) = \left(\max_{i=1}^n X_{i,1}, \ldots, \max_{i=1}^n X_{i,d} \right)$$

has distribution $F_{\boldsymbol{X}}^n$, that is, for $\boldsymbol{x} = (x_1, \ldots, x_d)$,

$$F_{X}^{n}(x) = (F_{X}(x))^{n} = \Pr(X_{i,1} \le x_{1}, \dots, X_{i,d} \le x_{d}, i = 1, \dots, n)$$

 $\underline{\Lambda}$ The componentwise maximum M_n can be composed of values $X_{i,j}$ with different indices *i*.

Illustration: bivariate componentwise block maxima

A bivariate series $\mathbf{X}_i = (X_{i,1}, X_{i,2})$ (with strong cross-correlation) and its componentwise maxima within the blocks separated by red lines. Most but not all of the maxima occur at the same time in the two series.

Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (*d*-dimensional) distribution *G* is called max-stable if there exist deterministic vector sequences $\alpha_n = (\alpha_{n,1}, \ldots, \alpha_{n,d})$ and $\beta_n = (\beta_{n,1}, \ldots, \beta_{n,d}) > \mathbf{0}$, $n \in \mathbb{N}$, such that

$$G^n(\alpha_n + \beta_n z) = G(z), \quad z \in \mathbb{R}^d.$$

If all finite-dimensional distributions of a stochastic process $Z = \{Z(s), s \in D \subset \mathbb{R}^k\}$ are max-stable, we call Z a max-stable process.

Equivalently, if $X_1 \sim G$, then the componentwise maximum over n iid copies of X_1 satisfies

$$\frac{\boldsymbol{M}_n-\boldsymbol{\alpha}_n}{\boldsymbol{\beta}_n} \quad \stackrel{d}{=} \quad \boldsymbol{X}_1, \quad n \in \mathbb{N}.$$

▲ Multivariate max-stability is stronger than max-stability of the univariate marginal distributions.

• If $Z = (Z_1, ..., Z_d) \sim G$ with $Z_j \sim G_j$, then the univariate marginal distributions G_j are max-stable:

 $Gj(z_j) = \operatorname{GEV}(z_j; \xi_j, \mu_j, \sigma_j) = \operatorname{Pr}(Z_j \leq z_j) = G(\infty, \dots, \infty, z_j, \infty, \dots, \infty).$

 Additionally, max-stability of G implies a stability property for the dependence structure.
Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction

If there exist deterministic normalizing vector sequences $\boldsymbol{a}_n = (a_{n,1}, \ldots, a_{n,d})$ and $\boldsymbol{b}_n = (b_{n,1}, \ldots, b_{n,d}) > 0$, $n \in \mathbb{N}$, such that the following convergence holds,

$$\frac{\boldsymbol{M}_n-\boldsymbol{a}_n}{\boldsymbol{b}_n}\to \boldsymbol{Z}=(Z_1,\ldots,Z_d)\sim \boldsymbol{G},\quad n\to\infty,$$

where Z has non-degenerate marginal distributions, then G is a multivariate extreme-value distribution, that is, a multivariate max-stable distribution.

If all finite-dimensional distributions of a process $X = \{X(s), s \in D \subset \mathbb{R}^k\}$ satisfy the above convergence, then $Z = \{Z(s), s \in D \subset \mathbb{R}^k\}$ is a max-stable process.

(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of finite-dimensional distributions. There also exist results for convergence in spaces of continuous functions over a compact domain *D*.

Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the marginal distributions F_j of X_j and G_j of Z_j .

• Often, the unit Fréchet marginal distribution is used:

$$G_j^\star(z) = \operatorname{GEV}(z; \, \xi = 1, \mu = 1, \sigma = 1) = \exp\left(-rac{1}{z}
ight), \quad z > 0.$$

 We can transform any continuous random variable X ~ F towards a variable with unit Fréchet distribution as follows: X^{*} = − ¹/_{log} F(X) ~ G^{*}.

• If
$$X_j \sim \operatorname{GEV}(\xi, \mu, \sigma)$$
, then $X_j^{\star} = \left(1 + \xi \frac{X - \mu}{\sigma}\right)^{1/\xi} \sim G_j^{\star}$.

 If G is a multivariate max-stable distribution, we write G* for the corresponding max-stable distribution with unit Fréchet margins. We call G* a simple max-stable distribution.

We call representations simple if they are based on the marginal *-scale.

Simple Maximum Domain of Attraction

We use the following notation:
$$T_{\xi,\mu,\sigma}(z) = \left(1 + \xi \frac{z-\mu}{\sigma}\right)^{1/\xi}$$
.

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector $\boldsymbol{X} \sim \boldsymbol{F}_{\boldsymbol{X}}$. The following two statements are equivalent:

- **1** The distribution F_X is in the MDA of a multivariate max-stable distribution G.
- 2 The following two properties hold jointly:
 - Marginal convergence: Each component X_j is in the univariate MDA of a GEV(ξ_j, μ_i, σ_j) distribution.
 - ② Convergence on the standardized scale: The distribution of the marginally standardized random vector

$$\boldsymbol{X}^{\star} = (X_1^{\star}, \ldots, X_d^{\star}) \sim F_{\boldsymbol{X}^{\star}}$$

satisfies

$$F^n_{\mathbf{X}^\star}(n\,\mathbf{z}) \to G^\star(\mathbf{z}), \quad n \to \infty$$

i.e., F_{X^*} is in the MDA of G^* , where

$$G(z_1,\ldots,z_d)=G^*(T_{\xi_1,\mu_1,\sigma_1}(z_1),\ldots,T_{\xi_d,\mu_d,\sigma_d}(z_d))$$

オロト オポト オヨト オヨト ヨー ろくで

With standardized marginal distributions, we can choose normalizing vector sequences $a_n^* = (0, ..., 0)$ and $b_n^* = (n, ..., n)$.

Some remarks about max-stable dependence

- There is no exhaustive representation of all simple max-stable distributions G* using a finite number of parameters.
- We can write G^* using the exponent function V^* ,

$$G^{\star}(\boldsymbol{z}) = \exp(-V^{\star}(\boldsymbol{z})), \quad \boldsymbol{z} > \boldsymbol{0},$$

where $t \times V^*(tz) = V^*(z)$ ((-1)-homogeneity).

• We say that two variables X_1 and X_2 are asymptotically independent if

$$G(z_1, z_2) = G_1(z_1) \times G_2(z_2),$$

and in this case

$$G^{\star}(z_1, z_2) = \exp(-(1/z_1 + 1/z_2)) = \exp(-1/z_1) \times \exp(-1/z_2), \quad z_1, z_2 > 0.$$

Example: multivariate logistic distribution

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

A large variety of parametric multivariate max-stable distribution has been proposed.

The multivariate logistic model was introduced by Emil J. Gumbel in 1960 and can be defined through its exponent function

$$V^{\star}(\boldsymbol{z}) = \left(z_1^{-1/lpha} + \ldots + z_d^{-1/lpha}\right)^{lpha}, \quad \boldsymbol{z} > \boldsymbol{0},$$

such that

$$G^{\star}(z_1,\ldots,z_d) = \exp\left(-\left(z_1^{-1/\alpha}+\ldots+z_d^{-1/\alpha}\right)^{\alpha}\right), \quad z > \mathbf{0}$$

with parameter $0 < \alpha \leq 1$ and

- perfect dependence for $\alpha \rightarrow 0$;
- independence for $\alpha = 1$.

Example: Simulations of bivariate logistic distribution

Sample size n = 500

Bivariate scatterplots show log Z^{\star} (standard Gumbel margins) with Z^{\star} \sim G^{\star}

Example: Huesler-Reiss distribution

Huesler–Reiss distributions are related to multivariate Gaussian distributions. Consider a multivariate Gaussian vector \hat{Y} .

Bivariate case: the simple max-stable distribution has parameter $\gamma_{12} = \operatorname{Var}(\tilde{Y}_2 - \tilde{Y}_1) > 0$ and for $z_1, z_2 > 0$,

$$G^{\star}(z_1,z_2) = \exp\left(-\frac{1}{z_1}\Phi\left(\frac{\sqrt{\gamma_{12}}}{2} + \frac{1}{\sqrt{\gamma_{12}}}\log\frac{z_2}{z_1}\right) - \frac{1}{z_2}\Phi\left(\frac{\sqrt{\gamma_{12}}}{2} + \frac{1}{\sqrt{\gamma_{12}}}\log\frac{z_1}{z_2}\right)\right)$$

(with standard Gaussian cdf Φ) \Rightarrow independence for $\gamma_{12} \rightarrow \infty$, perfect dependence for $\gamma_{12} \rightarrow 0$

The general multivariate distribution G^{\star} is parametrized by d(d-1)/2 variogram values $\gamma_{j_1,j_2} = \operatorname{Var}(\tilde{Y}_{j_2} - \tilde{Y}_{j_1})$ for $1 \leq j_1 < j_2 \leq d$.

Example: Simulations of the Huesler-Reiss distribution

Sample size n = 500Relatively weak dependence

 $\log Z^{\star}$ (Gumbel margins)

Example, cont'd

Sample size n = 500Relatively strong dependence

 $\log Z^*$ (Gumbel margins)

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima

Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies X_1, X_2, \ldots of a random vector $X = (X_1, \ldots, X_d) \sim F$, the following two statements are equivalent:

- The distribution F is in the multivariate MDA of the max-stable distribution G for the normalizing sequences a_n ∈ ℝ^d and b_n > 0.
- **@** For the normalizing sequences $a_n \in \mathbb{R}^d$ and $b_n > 0$, we have the following point-process convergence with a locally finite Poisson point process limit:

$$\left\{\frac{\boldsymbol{X}_{i}-\boldsymbol{a}_{n}}{\boldsymbol{b}_{n}}, \ i=1,\ldots,n\right\} \rightarrow \{\boldsymbol{P}_{i}, \ i\in\mathbb{N}\}\sim\mathrm{PPP}(\Lambda), \quad n\rightarrow\infty,$$

with intensity measure Λ .

If 1) and 2) hold, then $G(z) = \exp(-V(z))$ with

$$V(\mathbf{z}) = \Lambda\left((-\infty, \mathbf{z}]^{C}\right),$$

where the exponent measure Λ is defined on $A_{\Lambda} = \left(\overline{A}_{\xi_1,\mu_1,\sigma_1} \times \ldots \times \overline{A}_{\xi_d,\mu_d,\sigma_d}\right) \setminus u_{\star}$, with the marginal GEV parameters $\xi_j, \mu_j, \sigma_j, j = 1, \ldots, d$, where the lower endpoint

$$oldsymbol{u}_{\star} = \left(\inf A_{\xi_1,\mu_1,\sigma_1},\ldots,\inf A_{\xi_d,\mu_d,\sigma_d}
ight)$$

is excluded.

Simple representation with standardized margins

Specifically, the convergence of componentwise maxima and of point patterns is equivalent on the simple scale using standardized marginal distributions in X^* .

Recall: Standardized marginal scale

- $X_j^{\star} = -1/\log F_j(X_j)$ (or any other probability integral transform ensuring $X_j^{\star} \ge 0$ and $x \times \Pr(X_j^{\star} > x) \to 1$ as $x \to \infty$)
- Normalizing sequences on standardized scale are $\boldsymbol{a}_n = \boldsymbol{0}$ and $\boldsymbol{b}_n = (n, \dots, n)$
- GEV margins of G^* are unit Fréchet $G_j^*(z_j) = \exp(-1/z_j)$, $z_j > 0$ ($\xi_j = 1$, $\mu_j = 1$, $\sigma_j = 1$).

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set $B \subset A_{\Lambda}$, the simple exponent measure Λ^* satisfies

$$\Lambda(B) = \Lambda^*(B_{\boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\sigma}})$$

where $B_{\boldsymbol{\xi},\mu,\sigma} = \{(T_{\xi_1,\mu_1,\sigma_1}(x_1),\ldots,T_{\xi_d,\mu_d,\sigma_d}(x_d)) \mid (x_1,\ldots,x_d) \in B\}$. The simple measure Λ^* is defined on $A_{\Lambda^*} = [0,\infty)^d \setminus \mathbf{0}$ and is (-1)-homogeneous, that is, for any Borel set $B \subset A_{\Lambda^*}$, we have

$$t \times \Lambda^{\star}(tB) = \Lambda^{\star}(B), \quad t > 0.$$

Bivariate illustration of asymptotic stability $(D = \{1, 2\})$

Simple scale

$$(\xi = (1, 1), \mu = (1, 1), \sigma = (1, 1))$$

 $\alpha_n = (n, n), \beta_n = (0, 0)$
 $n \times \Lambda^*(nB) = \Lambda^*(B)$
nB

Standard exponential scale $(\boldsymbol{\xi} = (0,0), \boldsymbol{\mu} = (0,0), \boldsymbol{\sigma} = (1,1))$

$$\alpha_n = (1, 1), \ \beta_n = (\log n, \log n)$$

 $n \times \Lambda(\log(n) + B) = \Lambda(B)$

The trinity: three classical multivariate formulations

- The trinity of the three classical limit also holds in the multivariate setting.
- For threshold exceedances, a standard approach is to condition on an exceedance in at least one of the *d* components.
- To avoid technical notation, we focus on the simple setting.

Theorem

The following three convergences are equivalent:

Point-process convergence:

$$\left\{\frac{\boldsymbol{X}_{i}^{\star}}{n}, \ i=1,\ldots,n\right\} \to \{\boldsymbol{P}_{i}^{\star}, \ i\in\mathbb{N}\}\sim\operatorname{PPP}(\Lambda^{\star}), \quad n\to\infty.$$

• Convergence of componentwise maxima:

$$\frac{\boldsymbol{M}_n^{\star}}{n} \rightarrow \boldsymbol{Z}^{\star} \sim \boldsymbol{G}^{\star}, \quad n \rightarrow \infty,$$

with
$$G^{*}(z) = \exp(-V^{*}(z))$$
 where $V^{*}(z) = \Lambda^{*}([0, z]^{C})$.

• Peaks-Over-Threshold convergence:

$$\frac{\boldsymbol{X}^{\star}}{u} \mid \left(\max_{j=1}^{d} X_{j}^{\star} > u \right) \to \boldsymbol{Y}^{\star} \sim \frac{\Lambda^{\star} (\cdot \cap [\boldsymbol{0}, \boldsymbol{1}]^{C})}{\Lambda^{\star} \left([\boldsymbol{0}, \boldsymbol{1}]^{C} \right)}, \quad u \to \infty.$$

Remarks about the functional setting

- The trinity of limits also holds in the functional setting (e.g., Dombry & Ribatet, 2016).
- Usually one considers $X \in C(D)$ with compact domain D.
- One has to appropriately define weak convergence in a Banach function space.

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

A Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process $\{\pmb{P}_i^\star,\ i\in\mathbb{N}\}$ with simple ((-1)-homogeneous) intensity measure Λ^\star can be constructed as follows:

$$\{P_i^{\star}(s), i \in \mathbb{N}\} = \{R_i W_i(s), i \in \mathbb{N}\}\$$

where $R_i = 1/U_i$ and

- $0 < U_1 < U_2 < ...$ are the points of a unit-rate Poisson process on $[0,\infty)$, and
- $W_i = \{W_i(s)\}$ are iid nonnegative random functions, independent of $\{U_i\}$, with $\mathbb{E}W_i(s) = 1$ and $\mathbb{E}W_i(s)^{1+\varepsilon} < \infty$ for some $\varepsilon > 0$.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process Z^{\star} can be constructed as

$$Z^{\star}(s) = \max_{i \in \mathbb{N}} R_i W_i(s),$$

and any such construction is a simple max-stable process.

Illustration: simple max-stable construction

- In gray, "points" P_i^* of the Poisson process on D = [0, 5]
- Max-stable process is the componentwise maximum (in black)

Simulation based on the spectral representation

If it is simple to simulate from the distribution F_W of the spectral process W, we can draw samples from the simple max-stable process Z^* .

Exact simulation

If $P(W_j \le w_0) = 1$ for some threshold value $0 < w_0 < \infty$, j = 1, ..., d, then we can perform exact simulation of Z^* (even if $Z_j^* = \max_{i \in \mathbb{N}} R_i W_{ij}$ is defined as a maximum over an infinite number of components):

• set
$$m = 1$$

• generate $E_m \sim \operatorname{Exp}(1)$
• generate $W_m = (W_{m1}, \dots, W_{md})^T \sim F_W$
• set $Z^* = (Z_1^*, \dots, Z_d^*)^T$ with $Z_j^* = \max_{i=1,\dots,m} \frac{W_{ij}}{\sum_{k=1}^i E_k}$ for $j = 1, \dots, d$
• IF $\frac{w_0}{\sum_{k=1}^m E_k} \leq \min_{j=1,\dots,d} Z_j^*$ RETURN Z^*
ELSE set $m = m + 1$ and GO TO 2

Remarks:

- If the distribution of W_j is not finitely bounded, we can fix w_0 such that $P(W_j > y_0)$ becomes very small and perform approximation simulation.
- Even with unbounded W_j , exact simulation remains possible for many models using different algorithms (see the review of Oesting, Strokorb, 2022).

Example: Log-Gaussian spectral processes

A possible construction uses a centered Gaussian process $\tilde{W}(s)$ with variance function $\sigma^2(s)$ and sets

$$W(s) = \exp(\tilde{W}(s) - \sigma^2(s)/2)$$

 \Rightarrow A class of popular max-stable models:

- Multivariate: Huesler-Reiss distributions
- Spatial: Brown–Resnick processes

Remark: The distribution of the simple max-stable process $Z^* = \{Z^*(s), s \in D\}$ depends only on the variogram

$$\gamma(s_1, s_2) = \operatorname{Var}(\tilde{W}(s_2) - \tilde{W}(s_1)), \quad s_1, s_2 \in D.$$

Illustration: Simulation of Brown-Resnick processes

Two realisation of a spatial Brown-Resnick process (obtained using the rmaxstab function of the SpatialExtremes package) Simulation on a grid 20×20 (such that d = 400) in the square $[0, 10]^2$.

Illustration: process $\log(Z^*(s))$ (with standard Gumbel margins)

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

Prepresentations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

6 Perspectives

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

Pepresentations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances

Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Illustration: Spatial co-occurrence of exceedances

Original spatial field

Excursion set above a high threshold

Assessing co-occurrences of threshold exceedances

Threshold exceedances can occur simultaneously,

- in different variables,
- at nearby locations,
- at close time steps.

Do co-occurrences happen by chance (independence), or are they correlated in some way?

A simple and flexible exploratory approach

Idea: Study pairwise conditional co-occurrence probabilities given as

$$\Pr(X_2 > u \mid X_1 > u) = \frac{\Pr(X_1 > u, X_2 > u)}{\Pr(X_1 > u)},$$

and assess how they change with increasing u and for different pairs, for instance with respect to temporal lag or spatial distance.

Tail correlation coefficient

Consider a bivariate random vector (X_1, X_2) with $X_1 \sim F_1$ and $X_2 \sim F_2$.

Tail correlation

Consider the conditional probability

$$\chi(u) = \Pr(F_2(X_2) > u \mid F_1(X_1) > u) = \frac{\Pr(F_2(X_2) > u, F_1(X_1) > u)}{\Pr(F_1(X_1) > u)}, \quad u \in (0, 1).$$

We define the following limit (if it exists):

$$\chi = \lim_{u \to 1} \chi(u) \in [0, 1]$$

The coefficient χ symmetric with respect to X_1 and X_2 and is known as χ -measure or tail correlation. We say that

- X₁ and X₂ are asymptotically dependent if χ > 0;
- X_1 and X_2 are asymptotically independent if $\chi = 0$.

Link between tail correlation and max-stability

We have

$$\chi = \lim_{z \to \infty} \Pr(X_2^* > z \mid X_1^* > z) = \lim_{z \to \infty} \frac{\Pr(X_1^* > z, X_2^* > z)}{\Pr(X_1^* > z)} \quad (\star)$$

Assume that (X_1, X_2) is in the MDA of G. The bivariate max-stable convergence

$$F_{(X_1^{\star},X_2^{\star})}(nz,nz)^n \rightarrow G^{\star}(z,z), \quad z>0,$$

is equivalent to

$$1 - F_{(X_1^{\star}, X_2^{\star})}(nz, nz) \approx -\log G^{\star}(nz, nz), \quad \text{ for large } n.$$

By using

$$\Pr(X_1^{\star} > z, X_2^{\star} > z) = (1 - F_{X_1^{\star}}(z)) + (1 - F_{X_2^{\star}}(z)) - (1 - F_{(X_1^{\star}, X_2^{\star})}(z, z))$$

and
$$-\log G^*(nz, nz) = \frac{V^*(1,1)}{nz}$$
 and $1 - G_j^*(nz) \approx 1/(nz)$ in (*), we obtain
 $\chi = 2 - V^*(1,1).$

Remark: asymptotic independence corresponds to classical independence in the max-stable limit distribution. We have $\chi = 0$ if and only if $V^*(1, 1) = 2$, and in this case $V^*(z_1, z_2) = 1/z_1 + 1/z_2$ for $z_1, z_2 > 0$, and $G^*(z_1, z_2) = G_1^*(z_1) \times G_2^*(z_2)$.

Illustration: empirical tail correlation

Data setting: n = 200, u = 0.9. Blue points: exceedances of empirical distribution function $\hat{F}_1(X_1)$ above u. Red points: exceedances of $\hat{F}_2(X_2)$ above u given that $\hat{F}_1(X_1)$ is above u. **Empirical tail correlation:** $\hat{\chi}(u) = \frac{6}{20} = 0.3$.

Tail autocorrelation function (Extremogram)

Consider $X(s) \sim F$ with index $s \in \mathbb{R}^k$.

What is the tail correlation at a given distance $h = \Delta s \ge 0$?

For $h \ge 0$, we consider the conditional exceedance probability

$$\chi(h; u) = \Pr(F(X(s+h)) > u \mid F(X(s)) > u) = \frac{\Pr(F(X(s+h)) > u, F(X(s)) > u)}{\Pr(F(X(s)) > u)},$$

for $u \in (0, 1)$.

We define the tail autocorrelation function as the limit (if it exists)

$$\chi(h) = \lim_{u \to 1} \chi(h; u) \in [0, 1]$$

- By definition, $\chi(0) = 1$.
- Usually, $\chi(h)$ decreases as ||h|| increases.
- $\chi(h)$ is also called auto-tail dependence function or extremogram.

Illustration: Empirical (temporal) extremogram

Top row: temporal independence in X(t); bottom row: asymptotic dependence Left column: u = 0.95; right column: u = 0.99

Dashed red line corresponds to theoretical $\chi(h; u)$ for independence.

Summary measures for more than two variables

Consider d random variables X_1, X_2, \ldots, X_d with $d \ge 2$ and $X_j \sim F_j$.

Extremal coefficient (maxima)

The following limit (if it exists) is called extremal coefficient:

$$\theta_d = \lim_{u \to \infty} u \times \Pr\left(\max_{j=1,\dots,d} X_j^* > u\right)$$

- $\theta_d = V(1, \ldots, 1)$
- $\theta_2 = 2 \chi$.
- Interpretation: d/θ_d = average cluster size of jointly extreme events
- With MDA convergence, we have $G^{\star}(z^{\star},\ldots,z^{\star}) = \exp(-\theta_d/z^{\star}), z^{\star} > 0.$

Tail dependence coefficient (minima)

The following limit (if it exists) is called tail dependence coefficient:

$$\lambda_d = \lim_{u \to \infty} \Pr\left(\min_{j=1,\ldots,d} X_j^\star > u \mid X_1^\star > u\right) = \lim_{u \to \infty} u \times \Pr\left(\min_{j=1,\ldots,d} X_j^\star > u\right)$$

- For d = 2, we have $\lambda_2 = \chi$.
- Extremal coefficients and tail dependence coefficients are linked through inclusion-exclusion formulas using coefficients for $\tilde{d} = 2, \ldots, d$.

So far...

- Summary measures for co-occurrences of threshold exceedances
- Focus on minima and maxima of the components of X^{\star}

Next...

- · More flexibility through more general risk functionals
- · Generative and parametric models, not only summaries

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

Pepresentations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Multivariate and functional threshold exceedances

Consider $\mathbf{x} \in \mathbb{R}^D$ for a compact domain $D \subset \mathbb{R}^k$ with |D| > 1. Note: for a vector $\mathbf{x} = (x_1, \dots, x_d)$, we can set $D = \{1, \dots, d\}$.

No unique definition of threshold exceedances \Rightarrow Use a risk functional r

Extreme event occurs if r(x) > u with high threshold u

Bivariate illustrations:

Many relevant choices for risk functionals

To formulate asymptotic theory,

we use continuous homogeneous risk functionals

$$r: [0,\infty)^D \to [0,\infty), \quad r(t \times \mathbf{x}) = t \times r(\mathbf{x})$$

and we apply r on the simple scale.

We further assume continuous realizations: $x \in C(D)$.

There is also notation ℓ (for *loss*) instead of r (for *risk*).

Examples for $D = \{1, 2, \ldots, d\}$

• Minimum:
$$r(x_1, ..., x_d) = \min_{j=1}^d x_j$$

• Maximum:
$$r(x_1, \ldots, x_d) = \max_{j=1}^d x_j$$

- k^{th} order statistics: $r(x_1, \ldots, x_d) = k^{th}$ smallest value among x_1, \ldots, x_d
- Specific component: $r(x_1, \ldots, x_d) = x_{j_0}$
- Arithmetic average: $r(x_1, \ldots, x_d) = \frac{1}{d} \sum_{j=1}^d x_j$
- Geometric average $r(x_1,\ldots,x_d) = \left(\prod_{j=1}^d x_j\right)^{1/d}$
- Any norm, such as $r(x_1, \ldots, x_d) = \left(\sum_{j=1}^d x_j^p\right)^{1/p}$

Comparison of arithmetic and geometric average

Arithmetic average:

$$r(x_1,\ldots,x_d)=\frac{1}{d}\sum_{j=1}^d x_j$$

Geometric average:

$$r(x_1,\ldots,x_d) = \left(\prod_{j=1}^d x_j\right)^{1/d}$$

- Constant values $x_1 = \ldots = x_d \Rightarrow$ Geometric = Arithmetic average
- Stronger variability in values x_i leads to relatively lower Geometric average
How to standardize marginal distributions (recall + extension)

Given $X_j \sim F_j$ with continuous distribution function F_j , we apply a probability integral transform to a standardized scale X_i^* satisfying

• $x \times \Pr(X_j^* > x) \to 1$ as $x \to \infty$, which means $\Pr(X_j^* > x) \approx 1/x$ for large x

Two common choices

- Unit Fréchet scale: $X_j^{\star} = -\frac{1}{\log} F(j(X_j))$ (makes sense when working with maxima since the unit Fréchet is a GEV)
- Standard Pareto scale: $X_j^* = 1/(1 F_j(X_j))$ (makes sense when working with exceedances since the standard Pareto is a GPD)

Interpretation of X_j^* as the (approximate) return period of X_j : for an independent copy \overline{X}_j of X_j , we get

$$\Pr(\overline{X}_j > X_j \mid X_j) pprox rac{1}{X_j^\star}$$
 for relatively large X_j

(Note: If Pr(A) = 1/T, then the event A has a return period of T time units)

Limits conditional to risk exceedances $r(\mathbf{X}) > u$

r-Pareto limit processes (Dombry & Ribatet 2015)

Consider a random element $\mathbf{X} = \{X(s), s \in D\} \subset C(D)$ with compact domain D.

• If we have the following (weak) convergence in C(D),

$$\frac{\boldsymbol{X}^{\star}}{u} \mid (\boldsymbol{r}(\boldsymbol{X}^{\star}) > u) \quad \rightarrow \quad \boldsymbol{Y}_{\boldsymbol{r}}, \quad u \rightarrow \infty,$$

then Y_r is an *r*-Pareto process, satisfying Peaks-Over-Threshold stability:

$$rac{oldsymbol{Y}_r}{u} \mid (r(oldsymbol{Y}_r) > u) \quad \stackrel{d}{=} \quad oldsymbol{Y}_r, \quad ext{for any } u > 1.$$

• *r*-Pareto processes are characterized by a scale-profile decomposition:

$$m{Y}_r = R imes m{V}, \ R = r(m{Y}_r) \sim ext{standard Pareto}, \ m{V} = rac{m{Y}_r}{r(m{Y}_r)}, \ R \perp m{V}$$

 \Rightarrow Above high thresholds *u*, scale $r(X^*)$ and profile $X^*/r(X^*)$ become independent!

Link to other limits

• Trinity of limits:

Convergence of componentwise maxima \Leftrightarrow Point-process convergence \Leftrightarrow *r*-Pareto convergence for $r = \sup$

- *r*-Pareto convergence for sup \Rightarrow *r*-Pareto convergence for all *r*
- The probability measure of the *r*-Pareto process Y_r is

$$m{Y}_r \sim rac{\Lambda^\star \left(\,\cdot\,\cap\, A_r
ight)}{\Lambda^\star \left(A_r
ight)} \quad ext{with } A_r = \{m{y}\in \mathcal{C}(D) \mid r(m{y}) \geq 1\}$$

• Consider the simple point-process limit $\{\boldsymbol{P}_i^{\star}, i \in \mathbb{N}\}$

 \Rightarrow Construction of *r*-Pareto processes \doteq Extraction of *r*-exceedances:

$$\boldsymbol{P}_i^{\star} \mid (r(\boldsymbol{P}_i^{\star}) > 1) \quad \stackrel{d}{=} \quad \boldsymbol{Y}_i$$

Illustration: Simulation of r-Pareto processes

- Same realizations of the Poisson point process in all three displays
- Colors correspond to 3 most extreme risks for different risk functionals r
- Illustrations are on the log((·)*)-scale (Gumbel scale)

Example: Geometric average risk for Brown–Resnick models

The popular Huesler–Reiss and Brown–Resnick models have log-Gaussian profile processes V for r chosen as the geometric average.

This is very convenient for statistical methods!

Recall: Poisson process has construction $\{P_i^{\star}(s)\} = \{R_i \exp(\tilde{W}_i(s) - \sigma^2(s))\}$ with a centered Gaussian process \tilde{W} with variance function $\sigma^2(s)$

Log-Gaussian profile processes for r = Geometric average

Given the Pareto process $\boldsymbol{Y}_r = \boldsymbol{R} \times \boldsymbol{V}$, we have

$$\log V(s) \stackrel{d}{=} \tilde{W}(s) - \overline{W} - \operatorname{const}(s; \Gamma)$$

with

- a centered Gaussian process $ilde{W} = \{ ilde{W}(s), \, s \in D\}$ and its spatial average \overline{W} ,
- a constant $const(s; \Gamma)$, explicit in terms of the semivariogram matrix

$$\Gamma = \{\gamma(s_1, s_2), s_1, s_2 \in D\},\$$

of *Ŵ*.

(Result follows from Engelke et al. 2012; Dombry et al. 2016; Engelke et al. 2019)

Semivariograms for log-Gaussian profile processes

Recall: The log-profile process is

$$\log V(s) = \tilde{W}(s) - \overline{W} - \operatorname{const}(s; \Gamma)$$

Same semivariograms of the log-profile log V and the original Gaussian process \tilde{W} ! $\gamma_{\log V}(s_1, s_2) = \frac{1}{2} \mathbb{V} \left[\log V(s_2) - \log V(s_1) \right] = \frac{1}{2} \mathbb{V} \left[\tilde{W}(s_2) - \tilde{W}(s_1) \right] = \gamma_{\tilde{W}}(s_1, s_2)$

 \Rightarrow Classical variogram analysis becomes possible for $\log V!$

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

Prepresentations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Gridded temperature reanalysis data

- Daily average temperature reanalysis of Météo France (SAFRAN model at 8km resolution)
- Study period 1991-2020
- Focus on summer temperatures (June-September)

Modeling approach

- Marginal transformation to standard Pareto
- We fit separate *r*-Pareto models for separate administrative regions
- Daily risk exceedances using Geometric Average of return periods
- Temporal declustering with runs method for the risk series $r(X_t^{\star})$
- Maximum likelihood using log V with a stable covariance function in $ilde{W}$

Study domain: 22 French administrative regions

Results: Marginal GPD parameters

Scale $\sigma_{GP}(s)$

Results: Estimated extremal variograms

Based on the stable covariance function

$$\operatorname{Cov}(\mathsf{Distance}) = \mathsf{SD}^2 \times \exp\left(-(\mathsf{Distance}/\mathsf{Scale})^{\mathsf{Shape}}\right)$$

(for Distance = $\|\Delta s\| = \|s_2 - s_1\|$)

and maximum likelihood estimation using observations of log ${\pmb V}$

Results: Estimated tail correlations

$$\chi(s,s+\Delta s) = \lim_{u\to\infty} \Pr(X^{\mathcal{P}}(s+\Delta s) > u \mid X^{\mathcal{P}}(s) > u) = 2\left(1 - \Phi\left(\sqrt{(\gamma(s,s+\Delta s))}\right)\right)$$

84/89

Results: Empirical/parametric extremal variograms

- Empirical (in dashed lines) and fitted parametric variograms
 Δ Parametric estimates exploit also the Gaussian mean const(s; Γ)
- Generally satisfactory fit
- During extreme heat days, stronger spatial variability in the Southern regions

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Statistical aspects of extreme-value analysis

In practice, we typically have observations of a sample X_1, \ldots, X_n with *n* fixed.

- Most approaches exploit one of three classical representations: block maxima; threshold exceedances; point patterns.
- Peaks-over-threshold methods offer high flexibility, especially by using risk functionals for dependent extremes.
- We assume that extreme-value limits provide a good approximation for large *n* or high threshold *u*.
- Bias-variance tradeoff in statistical estimation:

Higher threshold or Larger block \Leftrightarrow Less bias but higher variance

- Rough distinction between likelihood-based (parametric) approaches and other "semi-parametric" approaches
- Likelihood approaches for dependent extremes usually require calculating Λ(A_r) for some risk region A_r, which can be computationally very costly, or even prohibitive if |D| is large.

Important topics in current extreme-value research

Types of extreme events:

- Application of risk functionals r directly to \boldsymbol{X} and not to standardized \boldsymbol{X}^{\star}
- Improved analysis of nonstationary extremes, especially for applications to climate change
- Compound extremes (in the climate and risk literature)
 - · Aggregation of not necessarily extreme components leads to extreme impacts
 - Example: Persistence of relatively high temperatures and low precipitation leads to extreme drought conditions
- Subasymptotic extremal dependence that is not stable at observed levels

 \Rightarrow Non-asymptotic representations and statistical garantuees?

Methods and algorithms:

- Machine Learning for extreme events
- Scalability of algorithms to large datasets, such as climate-model simulations

Some literature for further reading

Theory and probabilistic foundation:

• Resnick (1987). Extreme Values, Regular Variation and Point Processes.

Statistical modeling:

• Coles (2001). An introduction to statistical modeling of extreme values.

Mix of both:

- Embrechts, Klüppelberg, Mikosch (1997). Modelling extremal events: for insurance and finance.
- de Haan, Ferreira (2006). Extreme-value theory: an introduction.

A review of available software (R-based):

 Belzile, Dutang, Northrop, Opitz (2023+). A modeler's guide to extreme-value software. https://arxiv.org/abs/2205.07714