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Our original motivation

Problem

• Clustering of high dimensional chemical formulas

Data size

• 106 formulas
• Dimension d ∼ 4000

Clustering in high-dimensional spaces is usually very difficult

and Euclidian or ad-hoc distances might be misleading...



Our original motivation

Problem

• Clustering of high dimensional chemical formulas

Data size

• 106 formulas
• Dimension d ∼ 4000

Clustering in high-dimensional spaces is usually very difficult
and Euclidian or ad-hoc distances might be misleading...



A curse of dimensionality

Bad news

Let ωD(r) = ωD(1)rD be the volume of the ball of radius r in RD.

ωD(1)− ωD(1− ε)
ωD(1) = 1− (1− ε)D D→∞−−−−→ 1

In high dimensional Euclidean spaces every two points of a
typical large set are at similar distance.
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Manifold hope

Good news: many structured data live in a manifold of dimension
much lower than ambient space (d� D).
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Motivation: MNIST Dataset

van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). Visualizing Data Using t-SNE. Journal of
Machine Learning Research. 9: 2579–2605.
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Dimension reduction and distances

• In most unsupervised learning tasks, a notion of similarity
between data points is both crucial and usually not directly
available as an input.

• The efficiency of tasks like dimensionality reduction and
clustering might crucially depend on the distance chosen.

• Since the data lies in an (unknown) lower dimensional surface,
this distance has to be inferred from the data itself.

• Delicate game between dimensionality reduction, choice of the
distance and clustering...
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Dimensionality reduction and distance learning

There are many techniques to address dimensionality reduction and
possibly finding distances in lower dimensional spaces:

• Principal components analysis (PCA),
• Multidimensional scaling (MDS),
• Embeddings (VAE, t-SNE,...)
• Isomap and variants.



Dimensionality reduction and distance learning

Dimensionality reduction

• Principal components analysis (PCA),
• Multidimensional scaling (MDS),
• Spectral embeddings
• Embeddings (VAE, t-SNE,...)

Distance learning

• Isomap and variants.



Dimensionality Reduction/distance learning: Isomap

Constructs the k-nn graph and finds the optimal path. The weight
of an edge is given |qi − qj |.

©J. B. Tenenbaum, V. de Silva, J. C. Langford, Science (2000).



Isomap

Theorem
Given ε > 0 and δ > 0, for n large enough

P
(

1− ε ≤ dgeodesic(x, y)
dgraph(x, y) ≤ 1 + ε

)
> 1− δ.

[Bernstein, de Silva, Langford, Tenenbaum (2000)].
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Fermat distance



The Problem

• Let M ⊆ RD be a d-dimensional surface (we expect d� D).

• Consider n independent points on M with common density
f :M 7→ R≥0.

Can we learn a better notion of distance between points (for
say clustering)?
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Objectives

We look for a distance that takes into account the
underlying manifold M and the underlying density f .



Euclidean Percolation and Sample Fermat’s distance

• α ≥ 1 a parameter, X = a discrete set of points q, x, y ∈ X.

DX(p,q) = inf{
K−1∑
j=1
|yi+1 − yi|α : K ≥ 2,

and (y1, . . . ,yK) is a X-path from p to q}.
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Visualisation

http://www.aristas.com.ar/fermat/index.html
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Homogeneous Poisson Point Process : Shape theorem

We based our analysis on:

Theorem (Howard and Newman (1997))

Let X a PPP with intensity λ = 1. Then there exists 0 < µ <∞
such that

lim
|q|→∞

DX(0,q)
|q| = µ, almost surely.

They also give bounds on fluctuations.



Sample to Macroscopic Fermat’s distance

Theorem (Groisman, J., Sapienza, ’20)

Under mild assumptions on f , there exists µ > 0, such that for
x, y ∈M and Xn i.i.d ∼ f we have

lim
n→∞

nβDXn(x, y) = µD(x, y),

almost surely, with β = (α− 1)/d.

D(x, y) = inf
Γ

∫
Γ

1
fβ
.



Fermat’s principle

In optics, the path taken between two points by a ray of light is an
extreme of the functional

Γ 7→
∫
Γ

n, n = refractive index

D(x, y) = inf
Γ

∫
Γ

1
fβ

f−β ∼ n

©S.Thorgerson - Pink Floyd, The Dark Side of the Moon (1973), Harvest,

Capitol.
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Snell’s law, the lifeguard and Fermat’s distance



Algorithmic considerations and generalizations

Restricted Fermat’s distance:

D(α,k)
Xn (x, y) = inf

r = (q1, . . . , qK)
qi+1 ∈ Nk(qi)

K−1∑
k=1
|qi+1 − qi|α.

Generalization of Isomap and Fermat’s distance.

Proposition (Groisman, J., Sapienza, ’20)

Given ε > 0, we can choose k = O (log(n/ε)) such that

P
(
D

(k)
Xn (x, y) = DXn(x, y)

)
> 1− ε.

→ We can reduce the running time from O (n3) to O (n2(logn)2).
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Open theoretical questions

How to choose α, k ?

• k independent of n, α = 1, f uniform ⇒ Isomap.
• k scales like log(n), α > 1 ⇒ Fermat.

• General proof of convergence for k fixed, α?
• How to choose α, k ?



Other previous mathematical results

Sung Jin Hwang, Steven B. Damelin, Alfred O. Hero III,

Shortest Path through Random Points,

The Annals of Applied Probability, 2016, Vol. 26, No. 5, pp
2791-2823.



Some clustering results



Clustering

©scikit-learn developers



Clustering with Fermat (Simulation L. Ferraris)



Clustering with Fermat K-medoids in the Swiss roll

(a) 2D data (c) Adjusted mutual
information

(e) Adjusted Rand in-
dex

(b) 3D data (d) Accuracy (f) F1 score



MNIST

Performance of Fermat + k-medoids compared to state of the art robust

clustering, Simulations Alfredo Umfurer.



Application in genetics

Fingerprints of cancer by persistent homology, 2019. A.
Carpio, L. L. Bonilla, J. C. Mathews, A. R. Tannenbaum,

• They compute Fermat’s distance between genes’expressions
(dimension 77) (They choose α ∼ 3.)

• They study clusters based on the Fermat distance.
• These clusters make noticeable the relations between gene

expressions in healthy samples and those in cancerous
samples."



The critical parameter



The critical parameter

Performance of clustering in function of α for different scenarios

Generic Conjecture: There exists a window of critical parameters
which maximizes the clustering performance.



How to find the critical window

• α > α0

Link to a macroscopic clustering problem:
Define a minimal α0 such that in the limit all points are
perfectly classified when it is possible.
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The critical parameter through the macroscopic problem

Recall the macroscopic Fermat distance:

Dα(x, y) = inf
γ⊂M

∫
γ

1
f (α−1)/d dγ. (4.1)

Definition (Strictly feasible macroscopic classification)

Given a family of clusters (Ci)i≤m we say that a macroscopic
clustering problem is strictly feasible if there exists 1 ≤ α <∞ and
ε such that

Dα(x, ci) ≤ Dα(x, cj)− ε, ∀i,∀x ∈ Ci,∀j 6= i. (4.2)

where ci is "some" center for the set Ci.



"Nice" Geometry

Definition (Critical Parameter)

α0 = inf{α : ∃ε such that Dα(x, ci) ≤ Dα(x, cj)−ε, ∀x ∈ Ci, ∀j 6= i.}

Proposition

If the clusters are convex and the density of points is bigger than
a1 in the clusters and smaller than a0 outside, then

α ≥ α0(d) = 1 + d
ω

log(a1/a0) , (4.3)

with d the intrinsic dimension, and ω a geometric constant.



More difficult Geometry

Proposition

If the clusters have a finite "reach" and the density of points is
bigger than a1 in the clusters and smaller than a0 outside, then

α ≥ α0(d) = 1 + d2 ω̃

log(a1/a0) , (4.4)

with d the intrinsic dimension, and ω̃ a geometric constant.



Convergence in the microscopic setting

We say that a (microscopic) classification/clustering problem is
strictly feasible if there exists 1 ≤ α <∞ and ε such that

DXn,α(x, ĉi) ≤ DXn,α(x, ĉj)− ε,∀i,∀x ∈ Ci,∀j 6= i, (4.5)

where ĉi are estimations of the the center of clusters Ci.

Definition (Microscopic critical Parameter)

αn0 = inf
{
α ≥ 1 : ∃ε such that:

DXn,α(x, ĉi) ≤ DXn,α(x, ĉj)− ε, ∀i, ∀x ∈ Ci, ∀j 6= i.
}



Convergence in the microscopic setting

Proposition

Assume consistency on the empirical means, then there exists some
constant C, c, γ > 0 such that:

P(αn0 > α0) ≤ Cne−cnγ + εn.

Conversely, if α < α0, then the microscopic clustering problem is
not strictly feasible with overwhelming probability.



Influence of the noise

Define the coefficient of variation

CVn =
√

Var(DXn,α)
E[DXn,α]2

Proposition

If d = 1,

CVn ∼
n→∞

1√
n

√
Γ (2α+ 1)
Γ (α+ 1) ∼α 2α/

√
n.



Influence of the noise

Define the coefficient of variation

CVn =
√

Var(DXn,α)
E[DXn,α]2

Conjecture

There exists ψ, c > 0 such that when n large and fixed, α large:

CVn = ∼
n→∞

cα/d/nψ.

Hence, clustering should be fine if the geometry is not too
rough (α0 scales as d)...



Applications

• Clustering
• Dimension reduction
• Density estimation
• Regression
• Any learning task that requires a notion of distance (not
necessarily in Euclidean space) as an input.



Download

A prototype implementation is available at
http://www.aristas.com.ar/fermat/index.html

http://www.aristas.com.ar/fermat/index.html


• Weighted Geodesic Distance Following Fermat’s Principle
(2018); F. Sapienza, P. Groisman, M. Jonckheere; 6th
International Conference on Learning Representations (ICRL)
2018.

• Nonhomegeneous First Passage Percolation and Distance
Learning ; P. Groisman, M. Jonckheere, F. Sapienza; Bernouilli
2021.



Thanks!



default
Homogeneous Poisson Point Process : Shape theorem

We based our analysis on:

Theorem (Howard and Newman (1997))

Let X a PPP with intensity λ = 1. Then there exists 0 < µ <∞
such that

lim
|q|→∞

DX(0,q)
|q| = µ, almost surely.

They also give bounds on fluctuations.



default
Uniform distribution on compact sets

XN ∼ PPP(C, n) on a convex set C ⊂ RD (with strictly positive
volume).

Corollary
Let β = (α− 1)/d. For all p,q ∈ Co we have

lim
N→∞

nβDXN (p,q) = µ|p− q|, a.s.

Moreover, given δ > 0 there exist positive constants c1, c2, c3, c4,
with c2 depending on δ, such that if |x− y| > δ then

P
(∣∣∣nβDXN (p,q)− µ|p− q|

∣∣∣ ≥ c4n
−1/3d

)
≤ c1 exp (−c2n

c3) .
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default
Some proof ideas I

For the case f constant and C convex, we saw that

lim
n→∞

nβDXn(p,q) = µ
1
fβ
|p− q|, a.s.

Locally, we can construct X−n ,X+
n ,Xn, where X−n ∼ PPP(fminn) y

X+
n ∼ PPP(fmaxn), so that X−n ⊂ Xn ⊂ X+

n .

Lemma (Bounds)

µf−βmax|p−q | ≤ lim inf
n→∞

nβDXn(p,q),

µf−βmin|p−q | ≥ lim sup
n→∞

nβDXn(p,q), with overwhelming probability
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default
Some proof ideas II

Lemma (Restriction to a neighborhood)
P
(
DXn(p,q) 6= DXn∩B(p,a|p q |)(p,q)

)
< c1e

−c2nc3



default
Some proof ideas III

An important issue is to prove that optimal paths have bounded
lenght.

Lemma

Let C a connected set and p, q ∈ C. Sea (y∗1, . . . ,y∗K) the
Xn-path that realizes DXn(p,q) with arc-length:

Ln =
K−1∑
i=1
|y∗i+1 − y∗i |.

then there exists `max <∞ such that

lim sup
n→∞

Ln < `max a.s.



default
Consequences

• Proving that Fermat’s distance empirical geodesics converge
to the macroscopic ones.
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Other previous mathematical results

Sung Jin Hwang, Steven B. Damelin, Alfred O. Hero III,

Shortest Path through Random Points,

The Annals of Applied Probability, 2016, Vol. 26, No. 5, pp
2791-2823.
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