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Air Pollution

> Air pollution is the biggest intimidation to public health and one of
the primary reasons to cause respiratory hazards and chronic
obstructive pulmonary disease (COPD) as a result risk of a patient

being attacked by the COVID-19 virus is too high.

» The pollution at an alarming level attracts the researchers’
recognition so much that the influence of different policies for

example odd and even trials, implementation of CNG fuel are

reviewed in detail.



_ CAUSE OF CONCERN

/

Air pollutwn ea?acerbate burden on wor/fers health

Study says over
the years, air
pollution in Delhi
has become a
significant concern

First India Bureau

New Delhi: The health
effects of breathing haz-
ardous air on a regular
basis are more frequent-
ly felt by people who
work outside. Confirm-
ing this, a recent study
found that workplace
exposure to ambient air
pollution and extreme
weather events exacer-

bate the overall burden
on outdoor workers’
health in the country’s
national capital.
Breathing difficulties
or acute lung function
impairment, irregular
heartbeat and chest dis-

comfort, back, shoulder,
and joint pains, eye red-
ness and irritation, and
finally skin rashes,
headaches, and overall
weakness were assessed
for three occupational
groups working in New

Delhi — autorickshaw
drivers, sweepers, and
vendors — who were ex-
posed to poor air quality
and the effects of ex-
treme weather during
peak summer and win-
ter months.

The study, titled
“Health impact assess-
ment of Delhi’s outdoor
workers exposed to air
pollution and extreme
weather events: an inte-
grated epidemiology ap-
proach,” was carried
out by doctors, scien-
tists, and academicians
from a number of repu-
table national institutes
and used a detailed
questionnaire in con-
sultation with medical
experts to understand
their perceptions of the
health effects of air pol-
lution and extreme
weather events on out-
door workers, as well as
a pulmonary function
test for reassurance.




Poor air quality, extreme weather wreaking havoc on health of Delhi's

outdoor workers —
https://www.nationalheraldindia.com/national/poor-air-quality-extreme-

weather-wreaking-havoc-on-health-of-delhis-outdoor-workers.




Introduction

Transport sector emission inventory for megacity Delhi has been developed
for the period 2000-2005 to quantify vehicular emissions and

Evaluate the effect of relevant policy reforms on total emissions of various
air pollutants like CO2, CO, HC, NOx, SO, etc. over the years to assist in
future policy formulations.

Emission factor and vehicle utilization factor based approach as
recommended by IPCC [13] have been used for estimating emissions.



Introduction

Megacity Delhi — the National Capital Region of India — is one of the most
polluted cities in the world [25] having transport as major source of criteria
area pollutants [12].

In terms of emissions of various pollutants, Delhi was among the top five
SO2 emitting megacities of the world in early nineties and transport sector
was the prime culprit for it [11].

Mashelkar et al. (2002) [18] state that the emission range of NOx from
transport sector is 66% to 74% in Delhi.

CPCB (Central Pollution Control Board) [4] data shows that almost 50% of
the emission in Delhi is from vehicular activities, followed by domestic,
industrial, and power plants.
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Introduction

According to Xie and Shah (2002) [26], diesel driven vehicles were the

major source of NOx emission in Delhi, whereas least contribution was
from two- and three-wheelers.

According to ADB (Asian Development Bank) [1], diesel driven vehicles

are the major contributor of PM emission among all vehicle categories in
Delhi.

As a consequence, incidence of respiratory diseases in Delhi is 12 times the

national average, and 30% of Delhi’s population suffers from respiratory
disorders [16].

Its poor air quality is responsible for about 18600 premature deaths per year
[22].



Important methodologies in previous research work

Location Focus area Prime detection Reference

Delhi Estimation of PM> 5 IDW and OK Shukla et al. 2020

Guangdong Spatio-temporal estimation | IDW-BLSTM performed | Ma et al. 2019
province, China of PM> 5 etficiently

China Spatio-temporal estimation | RFSTK responded Shao et al. 2020
of PM> 5 satistactorily

China Spatial and temporal pattern | Linear regression and Luetal 2017
recognition of PM>5 grey system correlation
concentration analysis

Relationship between PM,5 | Six ML learners Mandal et al. 2020

and other spatio-temporal
covariates are explained

Statistical analysis of PM>5 | Seasonal influence San Martini et al. 2015
concentration




CO2 Emission

The CO2 emissions increased by about 24% from 13.36 Tg in 2000 to 16.62
Tg in 2005.

From 2000 to 2002, emissions decreased by about 11% from 13.36 Tg in
2000 to 11.92 Tg in 2002 followed by rising trend till 2005.

Implementations of various emission norms and phasing out of old vehicles

during this period might be responsible for decreased emissions during 2001
and 2002.

Increasing vehicle population led to rising emissions between 2002 and
2005.



CO Emission

Emissions of CO increased by 78% from 197 Gg in 2000 to 350 Gg in
2005.

Gradual increasing trend was observed in emissions from 2000 to 2001.

Increasing two wheeler population might be responsible for the
gradual increment in CO emissions during 2000 to 2005.



HC Emission

Hydrocarbons (HC) emission increased 1.3 times from 96 Gg in 2000 to
222 Gg in 2005.

Highest increment in HC emission was observed from 107 Gg in 2001 to
177 Gg in 2002 (65%).

After 2002, HC emissions showed a constant rising trend.



NOX

NOx emission trend, in comparison to other pollutants, showed a different
scenario.

About 0.5% of decline was observed in NOx emission (105 Gg in 2000 to 104
Gg in 2005).

During 2000 to 2002, steep decreases were observed followed by steadily rising
emission trend until 2005.

Highest increase (23%) was found during 2002 to 2003; followed by 6% annual
average increase till 2005.

Goods vehicles were the predominated source of NOx emission (51%) followed
by buses (36%), cars (6%), two wheelers (6%), and autos (1%) during the study
period.



TSP Emission

Total suspended particles (TSP) emissions, increased from 8 Gg in 2000 to
10 Gg 1n 2005 (about 31% increment).

Two-wheelers were responsible for high TSP emissions (40%) during 2002-
2005 followed by goods vehicle (29%), buses (19%), cars (10%) and autos
(2%).

However, it 1s observed that TSP emissions from goods vehicles were
higher before 2002.

It shows the efficacy of CNG implementation and clean fuel related
initiatives taken after 2001.
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SO2 Emission

Approximately 9% of the decrease was observed from 12 Gg in 2000 to 11
Gg in 2005, with highest decrease (32%) between 2000 and 2002.

After 2002, emissions increased with annual average rate of 7.69% per year,
but were less in comparison to those of 2000.

Buses contributed highest amount (45%) of SO2 followed by goods vehicle
(31%), cars (12%), two-wheelers (11%) and auto (1%)



Study Area

We selected Delhi, the capital of India, to study the air pollution of
BL and DL during the first wave of the Covid-19 pandemic in India.

We considered the air pollution data collected by the monitoring

stations, maintained by the Central Pollution Control Board
(CPCB).

The dataset contains 38 monitoring stations, where the data were
collected over 24 hours.

The time period was taken from 1st January 2019 to 28th February
2021.
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Major activity of monitoring stations
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AnandVihar

IGI Airport, T3
ITO, Delhi

R K Puram
Punjabi Bagh
Ayanagr

Burari Crossing
Sirifort
Mandirmarg

Lodhi Road
Shadipur

CRRI, Mathura Road
DTU

NSIT, Dwaraka
North Campus DU

Pusa

Transport
Transport
Transport
Residential
Residential
Residential
Residential
Residential
Commercial
Commercial
Commercial
Institutional
Institutional
Institutional
Institutional
Institutional




Descriptive statistical measurements of 24 hour
PM, s emissions during the entire time period

Summary Value, (ug/m’)

Minimum 10.22
First quartile (Q) 41.88
Median (O») 67.77
Mean 94.12
Third quartile (Os) 122.14
Maximum 715.04
Mode 45.044
Standard deviation 75.18




Histogram of PM: s of monitoring stations
AnandVihar R K Puram, Delhi
Frequency Frequency
35 35

30 30
25 25
20 20
15 15

10 10
5 5
0

100 200 300 400 0 50 100 150 200 250 300 350
PM. | (ug/m’) PM. ; (ug/m’)
Minimum: 20.78, First quartile: 53.57, Minimum: 11.38, First quartle: 35.37,
Median: 86.25, Mean: 112.83, Median: 57.75, Mean: 78.33,
Third quartle: 152.83, Maximum: 373,46, Third quartile: 97.52, Maximum: 318.06,
Standard deviation: 85.23, Skewness: 0.94  Standard deviation: 64.79, Skewness: (.95
Kurtosis: 4.28 Kurtosis: 6.04




0 50 100 150 200 250 300 350
PM. , (ug/m’)
Minimum: 15.65, First quartile: 39.37,
Median: 67.97, Mean: 87.02, '
Third quartle: 110.31, Maximum: 311.65,
Standard deviation: 67.55, Skewness: 0.85
Kurtosis: 4.94

CRRI mathura road
Frequency
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0 50 100 150 200 250 300 350
PM,, (ug/m)
Minimum: 15.31, First quartile: 43.68,
Median: 69.08, Mean: 91.29,
Third quartile: 122.29, Maximum: 307.3,
Standard deviation: 70.53, Skewness: 0.94
Kurtosis: 4.91




Inverse Distance Weight (IDW)

» Find out p on the basis of minimum RMSE.




RMSE and R? changing with the variation of p in IDW

RMSE

R2

P

RMSE

R2

21.713862
21.5611777
21.4079816

21.2656589
21.14805
21.0694
21.0408
21.06682
21.144
21.264

0.915102

0.916301
0.9175161
0.9186298
0.9589295

0.959249
0.9593693
0.9202081
0.9196403
0.9187535

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

21.41463
21.585
21.76469
21.947072
22.12609
22.29762
22.4589
22.608
22.74565
22.8706

0.917632
0.9163575
0.9149997
0.9136144
0.9122447
0.9109228
0.9096708
0.9085022
0.9074232
0.9064344




Choice of p

RMSE Vs. p

Figure: R2 and RMSE vs. p in IDW




IDW Contour

Figure: IDW for BL.




IDW Contour Plot-Il
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Figure: IDW for DL




Ordinary Kriging (OK)

Suppose the process value in the location xp is defined as

Z*(xo) where

Z*(xg) = Z w; Z(x;)

and w; s are the weights.

Here the constraint is > 7 ; w; = 1.




Minimizing Error Variance

(n+1)x (n+1)




OK Contour Plot-I

Figure: OK for BL.




OK Contour Plot-Il

Figure: OK for DL.




Random Forest Regression Kriging (RFK)

2(xc_;) = Z b - aij(x0) + Z w; - e(X;)
i=1 =1

(/) RF to fit the explanatory variables.

(i) OK to fit the OOB errors with expectation 0.




RFK Contour
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Figure: RFK for BL.




Figure: RFK for DL.




AQI Contour Plot-I

Figure: Contour of AQI for BL




AQI Contour Plot-Il
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Figure: Contour of AQI for DL




Comparison between IDW, OK, and RFK corresponding to the spatially
autocorrelated weeks in 2019 and 2020 on the basis of RMSE

SL.No. Week Year IDW OK RFK

12 2020 15.46 12.53 0.030
13 2019 16.73 15.93 0.071
13 2020 9.90 9.64 0.011
14 2019 18.14 16.32 0.135
14 2020 11.91 11.45 0.043
15 2019 16.05 14.52 0.069
16 2019 9.90 9.53 0.024
17 2019 15.87 14.78 0.009
18 2019 13.24 14.10 0.069
19 2019 28.13 25.38 0.409
20 2019 16.40 13.15 0.138
20 2020 12.72 11.78 0.442
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Spatial trend for weekly PM, s emission of 20* week

A) Before lockdown (i.e. the year 2019) B) Dunng lockdown (i.e. the year 2020)
: mE  PMos s DMy

70 to 80 ko 40 to 45
+ 81 to 90 o 46 to 50

x 91 to 100 % 51 to 55
x 101 to 110 % 56 to 60
x111to 120 |3 x 61 to 65

1 x66to70
x /1 to'l5

Higher T Higher
PM,s s PM, -

€mission

emission

Note: The green line indicates the weekly higher PM>s emissions from weekly lower PM> s emissions.




Percentage of average decrease of PM,s, PM, and AQI

in diferent major-activity zones because of lockdown

(o)

Components

Transport

Residential

Institutional

Commercial

PMas
PMio
AQI

—63.79
—62.19
—11.11

—61.31
_54.84
29.05

—61.38
—49.83
—22.71

—62.13
—45.73
—26.76
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Spatial Copula

@ The copula (Cs(.,.)) is first employed to explain the spatial
dependency by Bardossy (2006) in 2006, to measure the
groundwater quality assuming that the spatial random function
Y (s) having marginal distribution invariant with spatial
translation and the random field is isotropic.

Cs(h, a1, @) =P|Y(s) < a1; Y(s+ h) < o]
= C(F(Y(s)), F(Y(s+ h))) (4.1)

@ In the previous article, to solve the limitation of interpolation and
neighborhood creation in 2008 Bardossy and Li (2008) first
introduced an interpolation algorithm with the help of a spatial
copula and focus on the neighborhood of a spatial point.




Convex Combination of Copulas

@ Graler (2014) defined the generalized form of the spatial copula
family instead of concentrating on the particular copula family
like other researchers. Therefore, they consider a convex
combination of bi-variate copulas.

(Ch(u, v); 0<h<h
(1=X)-Cl(u,v)+X2-Cl(u,v);  h<h<b

(1= X)-CE ' (u, v) + Mk - CE(u, v); k1 < h< Ik
1 Ik < h
(4.2)

In the Equation (4.2) the weights in convex combination is

S i ff - where h denoting the spatial lag.




Spatial Copula

@ In 2020 Sohrabian (2021) proposed a geo-statistical estimation
through a convex combination of the archimedean copula.

C*(B g) _ cardinality{(y1i, ¥2i)|Y1i < Y1(p): Yoi < Y2(q)}

(4.6)

n' n n
In the Equation (4.6) the p™ and g"" order statistics are
respectively, yyp) and ya(q).
o

Cé&()rgﬁg)r(nedian(u7 V) =p- CArchemedian(U’ V) 4 (1 _ P) . CArchemedian(u’ V)
(4.7)

In this Equation (4.7) p = p(|si — so|) = p(h;) € [0, 1] and
(u,v) € [0, 1]




Spatial Copula

@ Inthe year 2017 Alidoost, Stein, and Su (2018) employed this
interpolation algorithm to explain an important real-life event.
They have used this interpolation algorithm to predict air
temperature at Qazvin Plain, Iran.

@ They estimated suitable copula in each spatial bin based on the
lowest AIC values, and those selected copulas are
Student-t-Clayton and Student-t-Gumbel and created spatial
neighborhood by C-Vine copula.

@ Explaining spatial variability by gaussian variogram, they
estimate kriging and Co-Kriging parameters and compared the
results with spatial copula interpolation.




Spatial Copula

@ In 2019 Alidoost et al. (2021) obtained bias-corrected air
temperature values at the unobserved location along the whole
spatial surface via copula-based quantile mapping.

@ Their copula-based quantile mapping of spatial dependency
mainly illustrates three types of dependencies, such as the
dependency between air temperature and the corresponding
elevation at a particular location, between air temperature in a
specific area and its nearest neighborhood, and the combination
of the first two.

@ With the help of rank order transformation, they deduced the
empirical probability to exhibit copula, and employing the inverse
CDF transformation technique, they calculated the predicted
bias-corrected values at the unobserved spatial location.




Spatial Copula

@ In 2019 Brunner, Furrer, and Favre (2019) added one more
aspect to define spatial dependence via Fisher copula.

@ To validate the spatial dependency underlying this flood event,
they measure Kendall's = for each pair of stations. To choose the
suitable copula family, they cross-checked five different copula
families: Gaussian, Student-t, Gumbel, R-Vine, and Fisher
copula.

@ Fisher copula is advantageous because of modeling multiple
gauge stations, non-vanishing upper tail dependence, and radial
asymmetricity.

@ They have fitted Gaussian, Student-t, and Gumbel copula with
the help of maximum pseudo-likelihood estimation, R-vine
copula by the automated model selection, and Fisher copula
with two-step pseudo maximum likelihood estimation.




Limitations

@ To estimate parameters, they use the Maximum Likelihood
estimate, which does not provide a reasonable estimate in the
presence of missing data.

@ At the time of spatial clustering, they disregard the significance
of disjoint Geo-spatial regions. Thus the intersection part is the
most affected area, where the different effects of different
clusters become confounded.

@ They use conditional expectation for interpolation, but it is
invalid for the extreme valued Probability Density Function
(PDF).




Proposed Advancements

@ We emphasize more on local stationarity of a spatial random
field (SRF) more than the global stationarity of that SRF.
Therefore we would like to apply a hierarchical spatial clustering
algorithm.

@ We choose the neighborhood points by C-Vine copula and
derive the conditional probability distribution of the unobserved
points with the help of a modified gaussian distance kernel.

@ We estimate the parameter of marginal distribution using the
EM algorithm and that of copula by the MCMC scheme.

@ We derive the tail dependency of the covariates with the help of
a copula, and to maximum pollutant concentration in a month,
we employ blended extreme valued probability distribution.

@ Later, we extend this spatial copula in different temporal
replicates to the Spatio-Temporal copula interpolation with the
help of the Spatio-Temporal influence ratio.




Spatial Random Field (SRF)

@ The spatial domain is divided into k spatial clusters to get
m number of spatial regions i.e. .Z, the class of all possible
sets of points in a spatial region.

@ A conditional spatial random field is defined as:

Y — # CR

@ This article introduces a spatial cluster-based C-vine
copula and a modified Gaussian distance kernel to derive
a novel spatial probability distribution.

@ The proposed spatial interpolation approach is validated
by considering Delhi air pollution data.




Estimating Marginal PDFs and Parameters

@ Cullen-Frey graph of skewness and kurtosis determines
the suitable family of PDF and Akaike Information Criteria
(AIC), Bayesian Information Criteria (BIC), Log-likelihood
value (LogLik), and Kolmogorov-Smirnov (KS) values
determine Log-Normal (LN) for PM» 5, and Von-Mises (VM)
for wind direction (WD).

@ The algorithms used to estimate the parameter for LN,
VM, and Copula are respectively, EM, Uniformly Minimum
Variance Unbiased Estimator (UMVUE), and MCMC.




UMVUE of VM Distributions

If X; ~™@ VM then 'O(k}1'(cﬁ)s(x") and I°(k,)1'(s,£’)’(x") are the UMVUE of

cosu. and sinu. respectively and their corresponding variances
are

var(cos(x;)) =

1 b(k)-cos(2u) (h (k) - COS(;L)>2

2 T ok (k)

 b(k) - sin(2u) (/1 (k) - sin(u))"’

_ 1
var(sin(x;)) = 3 21o(K) lo(k)




C-Vine Copula




Spatial Copula Interpolation

@ Step-1: Employ the HSC algorithm along the whole
spatial surface.

@ Step-2: Devide disjoint spatial regions (SR).

@ Step-3: Creation of Spatial Random Field (SRF) within
each HSC.

@ Step-4: Conditional copula-based probability distribution
function (CCDF) and Conditional copula-based probability

density function (CCPDF) for each unobserved point in an
SR.

@ Step-5: Spatial Interpolator derived from CCDF




Hierarchical Spatial Clustering (HSC)

{(ob;,,0b;,) :
HDcyt & p(|| 0bj, — 0obj, ||) > reut & it # Ix}

{(Ob,‘j, y,-j) :

HD(ob;, yj) HDcut & p(|| 0bj; — yjj [|) = reut}

@ Here, N1, Na, ..., Nk be the k clusters, y; be the j7
unobserved point, and ob; be the j™ observed point of the
i HSC where, j =1,2,....n;;i =1,2,3, ..., k. n; be the
number of the unobserved points in i HSC and ¢;, the
centre of i cluster.







Spatial Region (SR)

@ Let v be the presence vector of all unobserved points
yii = (lon, lat), where lon and /at stand for the longitude
and latitude of an unobserved point respectively.

f:. 8 — {0,117 = f(y;) =v (4.8)

In the Equation (4.8) v is a binary vector of length k, where

V=[vq, Vo, ..., V]

y {1 if (lon, lat) € N,
0 otherwise

where | =1,2.3, ..., k.

(4.9)

@ Let Ry, Rs, ..., Rm be the m distinct SR where m < 2k — 1.
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Conditional Spatial Copula

@ The inclusion probability of the latitude (w;) and longitude
(B;) of an observed location in R; is
H(X1 . X2) = C(Fw(X1w), FB(Xgﬁ)). These two RVs, latitude
(X1) and longitude (X5) follow Uniform[ay, b{] and
Uniform[as, bo] respectively.

@ The CDF of that spatial random process (SRP), a

composite function of two RVs i.e.,
Y(.,.)={Y(w,B):w € R;,B € R} Iis
H(X1 . Xg,y) = C(Fw(X1w), FB(X2B)v F( Y))
@ The conditional PDF (CPDF) measures the CDF of SRP,
defined in the following two equations:

O°H(x1,%2,Y)

0X10Xo,0
fyr | %1, %) = 20 5 (4.10)

0X10Xo




CCDF of Unobserved Random Points

@ Applying the conditional copula (from Equation (4.10)) we
establish the Conditional Copula-based Probability Distribution
Function (CCDF) for j un-observed point in the first SR is

0 - p(|0bs — un|))
e, 0 p(1[0bi — unl[)

1 1/p
dj = € +exp— (U | fob, (¥ |X1, X2) — fum(yIXqu)I"] dy) :
0

a,-j:

exp — (sin_1 [\/A + cos(X1,0p;) * €OS(Xz_y) - B])




Spatial Interpolation

@ The mathematical formulation of spatial interpolator
derived from the Equation (4.11) is described in the
following:

fun’,ﬂ (y) — Z Qjj fOb,'(y | X17X2)

iER1

= argmax,f, " () = aj-argmaxyfop,(y | X1, Xo)
i€ Ry

(4.12)




Algorithm

Algorithm 1 Algorithm of SC Interpolation
Require: 0 <m <2 -~ 1; RyN Ry =0
1S — U‘._, Ni = U;n_l Rj
2 Gen; = {(lon;,lat;)} > Set of randomly generated points
3: for each j € Gen; do
& i «— Presence(Gen;) © Presence(.) is a binary vector like f(.) in
Equation(11)

if freg(?) = 1 then > freg(.) returns the sum of ¥
index « Index(7¥) > I'mdex(.) returns position of 1 in ¥
{oby,0b,, ...,0b,} « observed location in index*® HSC

SR(j) « Choose p™* closest SR from {oby,oby,...,0b,} close to
(lon;, lat;)

SC;j — Yiesn) Qijargmazy fo, (y | lon, lat)
else .
Ind — Index(t)

for each ¢ € Ind do
{0by, by, ..., 0b,} « observed location in ¢** HSC

S « S.append({oby,0bs, ..., 0b.}) > X.append(.) adds the

argument to existing X values

22 end for

23: SR(j) « Unique(S) v Unique(.) removes the duplicate elements
from its argument

2 SR(j) «— Choose p™ closest SR from {oby,oby,....0b,} close to
uo"jv’atj)

25:

26 SC; — ¥icsnriy) @ijargmazy fon, (y | lon, lat)

a7 end if

25 end for




Spatial Bayesian Vine Copula (SBVC)

£(0) = D216, (X1, %, X5, X416) - P(O)
T . 3013 (X1 X2, X3, xa10) - P(6)dI6

E(0|X1, Xo, X3, X4) = /9 . 7(0)d6 (4.13)

E(X1 y X2|X37 X4) — //X1 XD * fX1 ,X2|X3,X4(X1 , X2, X3, X4|é)dX1 dX2
(4.14)

F(y1,ye|x1,Xx2;0) = P[Y1(x1,X2) < y1, Yo(X1, X2) < yo| X4 = X1, Xo = Xz
(4.15)
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Fitting of Marginal Parametric PDF on Empirical PDF
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Figure: The empirical marginal CDF is fitted by the marginal positively
skewed parametric CDF and the fitting of marginal PDF.




Spatial Variation

Geo-Spatial variability of a PM, 5




Choice of PDFs

Table: The value of KS statistic, AIC and BIC to determine the
feasible marginal parametric PDF

Test Weibull Log-normal Gamma Exponential
Criteria
KS 0.06884229 | 0.02849193 | 0.06276518 | 0.1478233
AlIC 365.360 322.296 346.187 413.547
BIC 373.098 330.035 353.926 417.416

Table: Details and updated values of shape and scale parameter and
the corresponding Log-likelihood values

PDF Shape Scale LogLik
LN | 4.3764856 | 0.7701984 | -1959.331124
VM 3.583 1.908 -32.41559




Two-way ANOVA

Table: Two-way ANOVA to explain the dependence of PMs 5 emission
on WD and SC

Treatment SS MS P-Value
WD 20599.2864 | 980.9184 0.02404 *
Cluster 3623 1207.8 0.0334 *

Cluster- WD 1283 427.7 0.2543
Residuals 2389 265.4
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Spatial Autocorrelation

Correlogram




Spatial Interpolation using SC and SBVC

Spatial Interpolation
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Relationship between Observed and Predicted Values

Spatial Copula Output B Bayesian Spatial Vine-Copula Outpt C Ordinary Kriging Output
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Conclusions

» The proposed models’ SC and SBVC are extensions of the previous spatial copula-
based models that majorly addressed issues such as bin selection, usage of MLE to
estimate the parameter in missing data sets, and so on.

» Compare to other geostatistical models, the proposed SC and SBVC are very effective
and provide nearly accurate results.

» The SC model produces better results for spatially skewed spatial random fields and
provides a mathematical argument for selecting essential covariates.

» This model is explained in this study using a real-world data set of PM concentrations
in the air. Still, this algorithm can be used in other scenarios such as mining,
temperature modeling, meteorological modeling, and so on.

» This algorithm may be more advantageous than other spatial estimation models
because it makes no assumptions about Gaussian distribution, intrinsic stationarity,
dynamic behavior, or skewed data sets.
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