An introduction to extreme-value theory

Thomas Opitz

BioSP, INRAE, Avignon

Short course at the Stochastic Geometry Days

Dijon, 12-13 June, 2023

Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

- Theory for univariate extremes
- Theory for dependent extremes based on maxima and point processes
- Theory for dependent extremes based on threshold exceedances

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

A Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

6 Perspectives

The origins of Extreme-Value Theory (EVT)

- A probabilistic theory with its origins in the first half of the 20th century:
 - Fréchet (1927). Sur la loi de probabilité de l'écart maximum. *Annales de la Société Polonaise de Mathématique*.
 - Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. *Proceedings of the Cambridge Philosophical Society*.
 - von Mises (1936). La distribution de la plus grande de n valeurs. *Revue Mathématique de l'Union Interbalcanique*
 - Gnedenko (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. *Annals of Mathematics*.
- Strong development of multivariate and process theory since the 1970s

• Statistical methods and applications

- Often at the origin of theoretical developments (for example, Tippett's work for the cotton industry)
- Seminal monograph Statistics of Extremes (1958) of Gumbel
- Numerous applications since the 1980s
- Today, strong use for finance/insurance and climate/environment
- Typical goals:
 - Estimate and extrapolate extreme-event probabilities
 - Stochastically generate new extreme-event scenarios

Extreme events

Extreme events are located in the upper or lower tail of the distribution:

Without loss of generality, we focus on the extremes in the upper tail. = = =

Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X_1, X_2, \ldots

Averages
$$\overline{S}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Central Limit Theorem

$$rac{\overline{S}_n-\mu}{\sigma_n} o Z \sim \mathcal{N}(0,1)$$

Gaussian limit distribution (Sum-stability)

Spatial extension:

Gaussian processes

Geostatistics

Extremes (maxima) $M_n = \max_{i=1}^n X_i$

Fisher-Tippett-Gnedenko Theorem

$$rac{M_n-a_n}{b_n}
ightarrow Z \sim \operatorname{GEV}(\xi)$$
 (tail index $\xi \in \mathbb{R}$)

Extreme-value limit distribution (Max-stability)

Spatial extension:

Max-stable processes

Spatial Extreme-Value Theory

The trinity of the three fundamental approaches

Three asymptotic approaches to study extreme events in an i.i.d. sample $\{X_i\}$:

- **1** Block maxima: $M_n = \max_{i=1}^n X_i$ using blocks of size *n*
- 2 Threshold exceedances above a high threshold $u: (X_i u) | X_i \ge u$
- **3** Occurrence counts: $N(E) = |\{X_i \in E, i = 1, ..., n\}|$ for extreme events E

Asymptotic theory

For

- increasing block size n,
- for increasing threshold *u*, and
- for more and more extreme event sets E,

we obtain coherent theoretical representations across the three approaches.

500

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes

- Componentwise maxima
- Point processes
- Spectral construction of max-stable processes

A Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

6 Perspectives

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

The maximum of a sample

For a series of independent and identically distributed (iid) random variables

$$X_i \sim F, \quad i=1,2,\ldots$$

we consider the **maximum**

$$M_n = \max_{i=1}^n X_i \sim F^n,$$

where

$$F^n(x) = (F(x))^n.$$

The fundamental extreme-value limit theorem

Fisher-Tippett-Gnedenko Theorem

Let X_i , i = 1, 2, ... iid. If deterministic normalizing sequences a_n (location) and $b_n > 0$ (scale) exist such that

$$\frac{M_n-a_n}{b_n} \stackrel{d}{\to} Z \sim G, \quad n \to \infty, \quad (\star)$$

with a nondegenerate limit distribution *G*, then *G* is of one of the three types of extreme-value distributions:

- (Reverse) Weibull: $\tilde{G}(z) = \exp(-(-x)^{-\alpha}_+)$ with $\alpha > 0$ (with support $(-\infty, 0)$)
- Gumbel: $\tilde{G}(z) = \exp(-\exp(-x))$ (with support \mathbb{R})
- Fréchet: $\tilde{G}(z) = \exp(-x_{+}^{\alpha})$ with $\alpha > 0$ (with support $(0, \infty)$)

Remarks:

- Being of a certain type means being equal up to a location-scale transformation: G(z) = G̃(a + bz) with some b > 0, a ∈ ℝ. We can always choose a_n, b_n such that G = G̃.
- If convergence (*) holds, we say that F is in the maximum domain of attraction (MDA) of G.
- Equivalently to (*), we have $F^n(a_n + b_n z) \to G(z), n \to \infty, z \in \mathbb{R}$.

Sketch of the proof (1)

A key ingredient is the Extremal-Types Theorem, here copied from Embrechts, Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko & Kolmogorov (1954).

Extremal-Types Theorem

Let $A, B, A_1, A_2, ...$ be random variables and $b_n > 0$, $\beta_n > 0$ and $a_n, \alpha_n \in \mathbb{R}$ be deterministic sequences. If the following convergence holds,

$$\frac{A_n-a_n}{b_n}\stackrel{d}{\to} A, \quad n\to\infty,$$

then the alternative convergence

$$\frac{A_n - \alpha_n}{\beta_n} \stackrel{d}{\to} B, \quad n \to \infty, \tag{1}$$

holds if and only if

$$rac{b_n}{eta_n} o b \in [0,\infty), \quad rac{a_n - lpha_n}{eta_n} o a \in \mathbb{R}, \quad n o \infty.$$

If (1) holds, then $B \stackrel{d}{=} bA + a$ with a, b being uniquely determined. Moreover, A is nondegenerate if and only if b > 0, and the A and B are said to belong to the same type.

Sketch of the proof (2)

In the following, all convergences are understood for $n \to \infty$.

1 If the convergence $F^n(a_n + b_n z) \rightarrow G(z)$ holds, then for any t > 0,

$$F^{\lfloor nt \rfloor}(a_{\lfloor nt \rfloor} + b_{\lfloor nt \rfloor}z) \to G(z), \quad z \in \mathbb{R}.$$
 (2)

Observe that

$$F^{\lfloor nt \rfloor}(a_n + b_n z) = (F^n(a_n + b_n z))^{\lfloor nt \rfloor/n} \to G^t(z).$$
(3)

3 Using the Extremal-Types Theorem, there exist deterministic functions $\gamma(t) > 0$ and $\delta(t)$ such that

$$rac{b_n}{b_{\lfloor nt
floor}} o \gamma(t), \quad rac{a_n - a_{\lfloor nt
floor}}{b_{\lfloor nt
floor}} o \delta(t), \quad t > 0.$$

By considering (2) and (3), we get

$$G^t(z)=G(\delta(t)+\gamma(t)z), \quad t>0.$$

4 A consequence of the last equality is that for s, t > 0,

$$\gamma(st)=\gamma(s)\gamma(t),\quad \delta(st)=\gamma(t)\delta(s)+\delta(t).$$

The solutions of this functional equation are given by the three distribution functions of the reverse Weibull, Gumbel and Fréchet type.

Generalized Extreme-Value distribution (GEV)

The **Generalized Extreme-Value distributions (GEV)** uses threes parameter to jointly represent all possible limit distributions *G*:

$$G(z) = \operatorname{GEV}(z; \xi, \mu, \sigma) = \exp\left(-\left[1 + \xi \frac{z - \mu}{\sigma}\right]_{+}^{-1/\xi}\right) \quad (\star\star)$$

- Shape parameter (or tail index) $\xi \in \mathbb{R}$, determining the extremal type:
 - Reverse-Weibull MDA for $\xi < 0$
 - Gumbel MDA for $\xi = 0$
 - Fréchet MDA for $\xi > 0$
- Location parameter $\mu \in \mathbb{R}$
- Scale parameter $\sigma > 0$

For $\xi = 0$, (**) is the limit for $\xi \to 0$: $G(z) = \exp(-\exp(-(z-\mu)/\sigma))$, $z \in \mathbb{R}$.

The $(...)_+$ -operator in $(\star\star)$ means that the distribution G has positive density dG/dz for values z satisfying $1 + \xi \frac{z-\mu}{\sigma} > 0$

$$\Rightarrow \text{ Support of the GEV: } A_{\xi,\sigma,\mu} = \begin{cases} (-\infty, \mu - \sigma/\xi), & \xi < 0, \\ (-\infty, \infty), & \xi = 0, \\ (\mu - \sigma/\xi, \infty), & \xi > 0. \end{cases}$$

Illustration: GEV densities

In the MDA convergence (\star), we can always choose the normalizing sequences a_n , b_n such that $\mu = 0$, $\sigma = 1$, as for the probability densities shown below.

The three types have very different upper tail structure:

- Reverse-Weibull for $\xi < 0$: light tails with finite upper endpoint (GEV finite upper endpoint is $\mu \sigma/\xi$)
- Gumbel for $\xi = 0$: exponential tail
- Fréchet for $\xi > 0$: power-law tails, i.e., heavy tails

Empirical illustration

Histograms of i.i.d. samples X_i , i = 1, 2, ..., n, with different tail index ξ .

Examples of MDAs of common distributions:

- $\xi > 0$: Pareto ($\xi = 1/\text{shape}$), student's t ($\xi = \text{shape}$)
- $\xi = 0$: Normal, Exponential, Gamma, Lognormal
- $\xi < 0$: Uniform ($\xi = -1$), Beta

Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with cdf $F(x) = 1 - \exp(-x)$, x > 0. The distribution F^n of the maximum $M_n = \max_{i=1}^n X_i$, where $X_i \stackrel{iid}{\sim} F$, i = 1, ..., n, is

$$F^n(x) = (1 - exp(-x))^n.$$

Can we find a_n and b_n such that $\lim_{n\to\infty} F^n(a_n + b_n x)$ exists and is nondegenerate?

For $x > -\log n$,

$$F^{n}(\log n + x) = (1 - \exp(-(\log n + x))^{n} = \left(1 - \frac{\exp(-x)}{n}\right)^{n}$$
$$\rightarrow \exp(-\exp(-x)), \quad n \rightarrow \infty$$

Conclusion:

- Using $a_n = \log(n)$ and $b_n = 1$, we obtain $\lim_{n\to\infty} F^n(a_n + b_n x) = \exp(-\exp(-x))$ for any $x \in \mathbb{R}$.
- The exponential distribution is in the maximum domain of attraction of the standard Gumbel distribution, i.e., the GEV with $\xi = 0$, $\mu = 0$, $\sigma = 1$.

Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:

Class of extreme-value limit distributions G =Class of max-stable distributions

Max-stable distribution

A probability distribution G is called max-stable if for any $n \in \mathbb{N}$ there exist appropriate choices of deterministic normalizing sequences α_n and $\beta_n > 0$ such that

 $G^n(\alpha_n + \beta_n z) = G(z), \text{ for any } n \in \mathbb{N}.$

This also means that the MDA limit (\star) is exact (and not asymptotic) if F is max-stable.

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Threshold exceedances in a univariate sample

What are possible limits for threshold excesses

$$X - u$$
 given $X > u$?

Generalized Pareto limits for threshold exceedances

Consider iid X, X_1, X_2, \ldots where $X \sim F$ with upper endpoint $x^* = \sup\{x \in \mathbb{R} : F(x) < 1\} \in (-\infty, \infty]$.

Pickands–Balkema–de-Haan Theorem

Suppose that $M_n = \max(X_1, \ldots, X_n)$ converges to a $\operatorname{GEV}(\xi, \mu, \sigma)$ distribution according to the Fisher–Tippett–Gnedenko theorem. Equivalently, there exists a scaling function $\sigma(u) > 0$ such that

$$(X-u)/\sigma(u) \mid (X > u) \quad \rightarrow \quad Y, \quad u \rightarrow x^{\star},$$

and Y follows the Generalized Pareto Distribution $GPD(\xi, \sigma_{GPD})$ given as

$$\operatorname{GPD}(y;\xi,\sigma_{GPD}) = \operatorname{Pr}(Y \leq y) = 1 - (1 + \xi y / \sigma_{GPD})_+^{-1/\xi} \quad y > 0,$$

with scale parameter $\sigma_{GPD} > 0$.

- This result dates back to the 1970s.
- As before, the case $\xi = 0$ is interpreted as the limit for $\xi \to 0$:

$$GPD(y; 0, \sigma_{GPD}) = 1 - \exp(-y/\sigma_{GPD}), \quad y > 0$$

(= Exponential distribution).

Sketch of the proof

We here sketch the proof of " \Rightarrow "

(Convergence of maxima leads to convergence of threshold excesses).

1 Set $u_n = a_n + b_n \tilde{u}$ for \tilde{u} chosen in the support of the $\text{GEV}(\xi, \mu, \sigma)$. Then,

$$\Pr((X - u_n)/b_n > y \mid X > u_n) = \frac{1 - F(a_n + b_n(y + \tilde{u}))}{1 - F(a_n + b_n\tilde{u})}.$$
 (4)

2 On the one hand, the MDA condition $F^n(a_n + b_n z) \rightarrow G(z)$ implies

$$\log F(a_n + b_n z) \approx \frac{1}{n} \log G(z)$$
, for large n .

On the other hand, since $F(a_n + b_n z) \approx 1$ as *n* increases, we can use the first-order approximation $\log(1 + x) \approx x$ for small |x|, such that

$$\log F(a_n + b_n z) \approx F(a_n + b_n z) - 1.$$

Combining the two yields

$$1 - F(a_n + b_n z) \approx -\frac{1}{n} \log G(z).$$
(5)

3 By using the approximation (5) for the numerator and denominator of (4), we get

$$\Pr((X-u_n)/b_n > y \mid X > u_n) \to \frac{\log G(\tilde{u}+y)}{\log G(\tilde{u})} = 1 - \operatorname{GPD}(y;\xi,\sigma_{GPD}), \quad n \to \infty;$$

with $\sigma_{GPD} = \sigma + \xi(\tilde{u} - \mu) > 0$, and we can set $\sigma(u_n) = b_n$.

Illustration: GPD densities

The value of the tail index ξ characterizes the shape of the distribution. Here, σ_{GPD} is fixed to 1.

Peaks-over-threshold stability

By analogy with max-stability of GEV limit distributions for maxima, we have **Peaks-Over-Threshold (POT) stability** for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that $Y \sim \text{GPD}(\xi, \sigma_{GPD})$. Consider a new, higher threshold $\tilde{u} > 0$ such that $\text{GPD}(\tilde{u}; \xi, \sigma_{GPD}) < 1$. Then

$$Y - \tilde{u} \mid (Y > \tilde{u}) \sim \operatorname{GPD}(\xi, \tilde{\sigma}_{GPD}), \quad \tilde{\sigma}_{GPD} = \sigma_{GPD} + \xi \tilde{u}.$$

Exercice: Prove this using pencil + paper by showing

$$\frac{1 - \operatorname{GPD}(\tilde{u} + y; \xi, \sigma_{GPD})}{1 - \operatorname{GPD}(\tilde{u}; \xi, \sigma_{GPD})} = 1 - \operatorname{GPD}(y; \xi, \tilde{\sigma}_{GPD})$$

 \Rightarrow Application of the POT approach to a GPD yields again a GPD!

For $\xi = 0$, where the GPD is the exponential distribution, the POT stability is also known as the lack-of-memory property.

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Point-process convergence

The trinity of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X_1, X_2, \ldots of $X \sim F$, the following two statements are equivalent:

- 1 The distribution F is in the maximum domain of attraction of the max-stable distribution G with support $A_{\xi,\sigma,\mu}$ for the normalizing sequences $a_n \in \mathbb{R}$ and $b_n > 0$.
- **2** For the normalizing sequences $a_n \in \mathbb{R}$ and $b_n > 0$, we have the following point-process convergence with a locally finite Poisson-process process limit:

$$\left\{\left(\frac{i}{n},\frac{X_i-a_n}{b_n}\right),\ i=1,\ldots,n\right\}\to\{(t_i,P_i),\ i\in\mathbb{N}\}\sim\operatorname{PPP}(\lambda_1\times\Lambda),\quad n\to\infty,$$

with intensity measure $\lambda_1 \times \Lambda$ where λ_1 is the Lebesgue measure on (0, 1).

If 1) and 2) hold, then $G(z) = \exp(-\Lambda[z; \infty))$, and the exponent measure Λ defined on $A_{\xi,\sigma,\mu}$ is characterized by its tail measure

$$\Lambda[z,\infty) = -\log G(z) = \begin{cases} \left(1 + \xi \frac{z-\mu}{\sigma}\right)^{-1/\xi}, & \xi \neq 0\\ \exp\left(\frac{z-\mu}{\sigma}\right), & \xi = 0 \end{cases}, \qquad \mu \in \mathbb{R}, \ \sigma > 0.$$

Remark: Λ is singular at $\inf A_{\xi,\sigma,\mu}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Summary: The extreme-value trinity

We allow for affine-linear rescaling $\tilde{X}_i = \frac{X_i - b_n}{a_n}$ of the iid sample X_i , i = 1, ..., n.

MaximaOccurrence countsThreshold exceedancesImage: transform of trans

Exponent measure Λ possessing asymptotic stability: for any event E and c > 0, there are constants $\alpha(c) \in \mathbb{R}$, $\beta(c) > 0$ such that $c \times \Lambda(E) = \Lambda\left(\frac{E - \alpha(c)}{\beta(c)}\right)$

SQ Q