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Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

• Theory for univariate extremes

• Theory for dependent extremes based on maxima and point processes

• Theory for dependent extremes based on threshold exceedances
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The origins of Extreme-Value Theory (EVT)

• A probabilistic theory with its origins in the first half of the 20th century:

• Fréchet (1927). Sur la loi de probabilité de l’écart maximum. Annales de la Société
Polonaise de Mathématique.

• Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and
smallest member of a sample. Proceedings of the Cambridge Philosophical Society.

• von Mises (1936). La distribution de la plus grande de n valeurs. Revue Mathématique
de l’Union Interbalcanique

• Gnedenko (1943). Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics.

• Strong development of multivariate and process theory since the 1970s

• Statistical methods and applications

• Often at the origin of theoretical developments
(for example, Tippett’s work for the cotton industry)

• Seminal monograph Statistics of Extremes (1958) of Gumbel

• Numerous applications since the 1980s

• Today, strong use for finance/insurance and climate/environment

• Typical goals:
• Estimate and extrapolate extreme-event probabilities
• Stochastically generate new extreme-event scenarios

4/89



Extreme events
Extreme events are located in the upper or lower tail of the distribution:
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Without loss of generality, we focus on the extremes in the upper tail.
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Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X1,X2, . . .

Averages Sn = 1
n

Pn
i=1 Xi

Central Limit Theorem

Sn�µ
�n

! Z ⇠ N (0, 1)

Gaussian limit distribution
(Sum-stability)

Spatial extension:

Gaussian processes

Geostatistics

Extremes (maxima) Mn = maxni=1 Xi

Fisher–Tippett–Gnedenko Theorem

Mn�an
bn

! Z ⇠ GEV(⇠) (tail index ⇠ 2 R)

Extreme-value limit distribution
(Max-stability)

Spatial extension:

Max-stable processes

Spatial Extreme-Value Theory
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The trinity of the three fundamental approaches
Three asymptotic approaches to study extreme events in an i.i.d. sample {Xi}:

1 Block maxima: Mn = maxni=1 Xi using blocks of size n
2 Threshold exceedances above a high threshold u: (Xi � u) | Xi � u
3 Occurrence counts: N(E) = |{Xi 2 E , i = 1, . . . , n}| for extreme events E

Asymptotic theory

For

• increasing block size n,

• for increasing threshold u, and

• for more and more extreme event sets E ,

we obtain coherent theoretical representations across the three approaches.

Maxima Exceedances Occurrences
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The maximum of a sample

For a series of independent and identically distributed (iid) random variables

Xi ⇠ F , i = 1, 2, . . .

we consider the maximum
Mn =

n
max
i=1

Xi ⇠ Fn,

where
Fn(x) = (F (x))n.

10/89



The fundamental extreme-value limit theorem

Fisher–Tippett–Gnedenko Theorem

Let Xi , i = 1, 2, . . . iid. If deterministic normalizing sequences an (location) and
bn > 0 (scale) exist such that

Mn � an
bn

d! Z ⇠ G , n ! 1, (?)

with a nondegenerate limit distribution G , then G is of one of the three types of
extreme-value distributions:

• (Reverse) Weibull: G̃(z) = exp(�(�x)�↵
+ ) with ↵ > 0 (with support (�1, 0))

• Gumbel: G̃(z) = exp(� exp(�x)) (with support R)
• Fréchet: G̃(z) = exp(�x↵+) with ↵ > 0 (with support (0,1))

Remarks:

• Being of a certain type means being equal up to a location-scale transformation:
G(z) = G̃(a+ bz) with some b > 0, a 2 R. We can always choose an, bn such
that G = G̃ .

• If convergence (?) holds, we say that F is in the maximum domain of attraction
(MDA) of G .

• Equivalently to (?), we have Fn(an + bnz) ! G(z), n ! 1, z 2 R.
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Sketch of the proof (1)
A key ingredient is the Extremal-Types Theorem, here copied from Embrechts,
Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko & Kolmogorov
(1954).

Extremal-Types Theorem

Let A,B,A1,A2, . . . be random variables and bn > 0, �n > 0 and an,↵n 2 R be
deterministic sequences. If the following convergence holds,

An � an
bn

d! A, n ! 1,

then the alternative convergence

An � ↵n

�n

d! B, n ! 1, (1)

holds if and only if

bn
�n

! b 2 [0,1),
an � ↵n

�n
! a 2 R, n ! 1.

If (1) holds, then B
d
= bA+ a with a, b being uniquely determined. Moreover, A is

nondegenerate if and only if b > 0, and the A and B are said to belong to the same
type.

12/89



Sketch of the proof (2)
In the following, all convergences are understood for n ! 1.

1 If the convergence Fn(an + bnz) ! G(z) holds, then for any t > 0,

F bntc(abntc + bbntcz) ! G(z), z 2 R. (2)

2 Observe that

F bntc(an + bnz) = (Fn(an + bnz))
bntc/n ! Gt(z). (3)

3 Using the Extremal-Types Theorem, there exist deterministic functions �(t) > 0
and �(t) such that

bn
bbntc

! �(t),
an � abntc

bbntc
! �(t), t > 0.

By considering (2) and (3), we get

Gt(z) = G(�(t) + �(t)z), t > 0.

4 A consequence of the last equality is that for s, t > 0,

�(st) = �(s)�(t), �(st) = �(t)�(s) + �(t).

5 The solutions of this functional equation are given by the three distribution
functions of the reverse Weibull, Gumbel and Fréchet type.
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Generalized Extreme-Value distribution (GEV)

The Generalized Extreme-Value distributions (GEV) uses threes parameter to jointly
represent all possible limit distributions G :

G(z) = GEV(z; ⇠, µ,�) = exp

 
�

1 + ⇠

z � µ

�

��1/⇠

+

!
(??)

• Shape parameter (or tail index) ⇠ 2 R, determining the extremal type:
• Reverse-Weibull MDA for ⇠ < 0
• Gumbel MDA for ⇠ = 0
• Fréchet MDA for ⇠ > 0

• Location parameter µ 2 R
• Scale parameter � > 0

For ⇠ = 0, (??) is the limit for ⇠ ! 0: G(z) = exp(� exp(�(z � µ)/�)), z 2 R.

The (...)+-operator in (??) means that the distribution G has positive density dG/dz
for values z satisfying 1 + ⇠ z�µ

� > 0

) Support of the GEV: A⇠,�,µ =

8
><

>:

(�1, µ� �/⇠), ⇠ < 0,

(�1,1), ⇠ = 0,

(µ� �/⇠,1), ⇠ > 0.
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Illustration: GEV densities
In the MDA convergence (?), we can always choose the normalizing sequences an, bn
such that µ = 0, � = 1, as for the probability densities shown below.

The three types have very di↵erent upper tail structure:
• Reverse-Weibull for ⇠ < 0: light tails with finite upper endpoint

(GEV finite upper endpoint is µ� �/⇠)
• Gumbel for ⇠ = 0: exponential tail
• Fréchet for ⇠ > 0: power-law tails, i.e., heavy tails
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Empirical illustration

Histograms of i.i.d. samples Xi , i = 1, 2, . . . , n, with di↵erent tail index ⇠.
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Examples of MDAs of common distributions:

• ⇠ > 0: Pareto (⇠ = 1/shape), student’s t (⇠ = shape)

• ⇠ = 0: Normal, Exponential, Gamma, Lognormal

• ⇠ < 0: Uniform (⇠ = �1), Beta
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Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with cdf F (x) = 1� exp(�x), x > 0.

The distribution Fn of the maximum Mn = maxni=1 Xi , where Xi
iid⇠ F , i = 1, . . . , n, is

Fn(x) = (1� exp(�x))n .

Can we find an and bn such that limn!1 Fn(an + bnx) exists and is nondegenerate?

For x > � log n,

Fn(log n + x) = (1� exp(�(log n + x))n =

✓
1�

exp(�x)

n

◆n

! exp(� exp(�x)), n ! 1

Conclusion:

• Using an = log(n) and bn = 1, we obtain
limn!1 Fn(an + bnx) = exp(� exp(�x)) for any x 2 R.

• The exponential distribution is in the maximum domain of attraction of the
standard Gumbel distribution, i.e., the GEV with ⇠ = 0, µ = 0, � = 1.
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Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:

Class of extreme-value limit distributions G = Class of max-stable distributions

Max-stable distribution
A probability distribution G is called max-stable if for any n 2 N there exist
appropriate choices of deterministic normalizing sequences ↵n and �n > 0 such that

Gn(↵n + �nz) = G(z), for anyn 2 N.

This also means that the MDA limit (?) is exact (and not asymptotic) if F is
max-stable.
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Threshold exceedances in a univariate sample

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

What are possible limits for threshold excesses

X � u given X > u ?
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Generalized Pareto limits for threshold exceedances

Consider iid X ,X1,X2, . . . where X ⇠ F
with upper endpoint x? = sup{x 2 R : F (x) < 1} 2 (�1,1].

Pickands–Balkema–de-Haan Theorem
Suppose that Mn = max(X1, . . . ,Xn) converges to a GEV(⇠, µ,�) distribution
according to the Fisher–Tippett–Gnedenko theorem.
Equivalently, there exists a scaling function �(u) > 0 such that

(X � u)/�(u) | (X > u) ! Y , u ! x?,

and Y follows the Generalized Pareto Distribution GPD(⇠,�GPD) given as

GPD(y ; ⇠,�GPD) = Pr(Y  y) = 1� (1 + ⇠y/�GPD)
�1/⇠
+ y > 0,

with scale parameter �GPD > 0.

• This result dates back to the 1970s.

• As before, the case ⇠ = 0 is interpreted as the limit for ⇠ ! 0:

GPD(y ; 0,�GPD) = 1� exp(�y/�GPD), y > 0

(= Exponential distribution).
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Sketch of the proof
We here sketch the proof of “)“
(Convergence of maxima leads to convergence of threshold excesses).

1 Set un = an + bnũ for ũ chosen in the support of the GEV(⇠, µ,�). Then,

Pr((X � un)/bn > y | X > un) =
1� F (an + bn(y + ũ))

1� F (an + bnũ)
. (4)

2 On the one hand, the MDA condition Fn(an + bnz) ! G(z) implies

log F (an + bnz) ⇡
1

n
logG(z), for large n.

On the other hand, since F (an + bnz) ⇡ 1 as n increases, we can use the
first-order approximation log(1 + x) ⇡ x for small |x |, such that

log F (an + bnz) ⇡ F (an + bnz)� 1.

Combining the two yields

1� F (an + bnz) ⇡ �
1

n
logG(z). (5)

3 By using the approximation (5) for the numerator and denominator of (4), we get

Pr((X�un)/bn > y | X > un) !
logG(ũ + y)

logG(ũ)
= 1�GPD(y ; ⇠,�GPD), n ! 1;

with �GPD = � + ⇠(ũ � µ) > 0, and we can set �(un) = bn.
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Illustration: GPD densities
The value of the tail index ⇠ characterizes the shape of the distribution.
Here, �GPD is fixed to 1.
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Peaks-over-threshold stability

By analogy with max-stability of GEV limit distributions for maxima, we have
Peaks-Over-Threshold (POT) stability for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that Y ⇠ GPD(⇠,�GPD). Consider a new, higher threshold ũ > 0 such that
GPD(ũ; ⇠,�GPD) < 1. Then

Y � ũ | (Y > ũ) ⇠ GPD(⇠, �̃GPD), �̃GPD = �GPD + ⇠ũ.

Exercice: Prove this using pencil + paper by showing

1�GPD(ũ + y ; ⇠,�GPD)

1�GPD(ũ; ⇠,�GPD)
= 1�GPD(y ; ⇠, �̃GPD)

) Application of the POT approach to a GPD yields again a GPD!

For ⇠ = 0, where the GPD is the exponential distribution, the POT stability is also
known as the lack-of-memory property.
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Point-process convergence
The trinity of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X1,X2, . . . of X ⇠ F , the following two statements are equivalent:

1 The distribution F is in the maximum domain of attraction of the max-stable
distribution G with support A⇠,�,µ for the normalizing sequences an 2 R and
bn > 0.

2 For the normalizing sequences an 2 R and bn > 0, we have the following
point-process convergence with a locally finite Poisson-process process limit:

⇢✓
i

n
,
Xi � an

bn

◆
, i = 1, . . . , n

�
! {(ti ,Pi ), i 2 N} ⇠ PPP(�1 ⇥ ⇤), n ! 1,

with intensity measure �1 ⇥ ⇤ where �1 is the Lebesgue measure on (0, 1).

If 1) and 2) hold, then G(z) = exp(�⇤[z;1)), and the exponent measure ⇤ defined
on A⇠,�,µ is characterized by its tail measure

⇤[z,1) = � logG(z) =

8
<

:

⇣
1 + ⇠ z�µ

�

⌘�1/⇠
, ⇠ 6= 0

exp
⇣

z�µ
�

⌘
, ⇠ = 0

, µ 2 R, � > 0.

Remark: ⇤ is singular at inf A⇠,�,µ.
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Summary: The extreme-value trinity

We allow for a�ne-linear rescaling X̃i =
Xi�bn

an
of the iid sample Xi , i = 1, . . . , n.

Maxima
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Pr(maxni=1 X̃i  z)
! exp (�⇤[z,1))

Max-stable distr. (GEV)

Occurrence counts
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Pr(N(E) = k) !
exp(�(�1 ⇥ ⇤)(E))

(�1⇥⇤)(E)k

k!

Poisson process

Threshold exceedances
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Pr(X̃i � u > y | X̃i > u)
! ⇤[y ,1)/⇤[u,1)

Gen. Pareto distr. (GPD)

Exponent measure ⇤ possessing asymptotic stability:
for any event E and c > 0, there are constants ↵(c) 2 R, �(c) > 0 such that

c ⇥ ⇤(E) = ⇤

✓
E � ↵(c)

�(c)

◆

27/89


