An introduction to extreme-value theory

Thomas Opitz

BioSP, INRAE, Avignon

Short course at the Stochastic Geometry Days

Dijon, 12-13 June, 2023

Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

- Theory for univariate extremes
- Theory for dependent extremes based on maxima and point processes
- Theory for dependent extremes based on threshold exceedances
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in FrancePerspectives

The origins of Extreme-Value Theory (EVT)

- A probabilistic theory with its origins in the first half of the 20th century:
- Fréchet (1927). Sur la loi de probabilité de l'écart maximum. Annales de la Société Polonaise de Mathématique.
- Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proceedings of the Cambridge Philosophical Society.
- von Mises (1936). La distribution de la plus grande de n valeurs. Revue Mathématique de I'Union Interbalcanique
- Gnedenko (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of Mathematics.
- Strong development of multivariate and process theory since the 1970s

- Statistical methods and applications

- Often at the origin of theoretical developments (for example, Tippett's work for the cotton industry)
- Seminal monograph Statistics of Extremes (1958) of Gumbel
- Numerous applications since the 1980s
- Today, strong use for finance/insurance and climate/environment
- Typical goals:
- Estimate and extrapolate extreme-event probabilities
- Stochastically generate new extreme-event scenarios

Extreme events

Extreme events are located in the upper or lower tail of the distribution:

Without loss of generality, we focus on the extremes in the uppertail.

Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables X_{1}, X_{2}, \ldots

Averages $\bar{S}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Central Limit Theorem
$\frac{\bar{S}_{n}-\mu}{\sigma_{n}} \rightarrow Z \sim \mathcal{N}(0,1)$
Gaussian limit distribution (Sum-stability)

Spatial extension:

Gaussian processes
Geostatistics

Extremes (maxima) $M_{n}=\max _{i=1}^{n} X_{i}$

Fisher-Tippett-Gnedenko Theorem

$$
\left.\frac{M_{n}-a_{n}}{b_{n}} \rightarrow Z \sim \operatorname{GEV}(\xi) \text { (tail index } \xi \in \mathbb{R}\right)
$$

Extreme-value limit distribution (Max-stability)

Spatial extension:

Max-stable processes
Spatial Extreme-Value Theory

The trinity of the three fundamental approaches Three asymptotic approaches to study extreme events in an i.i.d. sample $\left\{X_{i}\right\}$:
(1) Block maxima: $M_{n}=\max _{i=1}^{n} X_{i}$ using blocks of size n
(2) Threshold exceedances above a high threshold $u:\left(X_{i}-u\right) \mid X_{i} \geq u$
(3) Occurrence counts: $N(E)=\left|\left\{X_{i} \in E, i=1, \ldots, n\right\}\right|$ for extreme events E

Asymptotic theory

For

- increasing block size n,
- for increasing threshold u, and
- for more and more extreme event sets E,
we obtain coherent theoretical representations across the three approaches.

Maxima

Exceedances

Occurrences

Introduction
(2) Univariate Extreme-Value Theory Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in FrancePerspectives
(1) Introduction
(2) Univariate Extreme-Value Theory Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

The maximum of a sample

For a series of independent and identically distributed (iid) random variables

$$
X_{i} \sim F, \quad i=1,2, \ldots
$$

we consider the maximum

$$
M_{n}=\max _{i=1}^{n} X_{i} \sim F^{n}
$$

where

$$
F^{n}(x)=(F(x))^{n}
$$

The fundamental extreme-value limit theorem

Fisher-Tippett-Gnedenko Theorem

Let $X_{i}, i=1,2, \ldots$ iid. If deterministic normalizing sequences a_{n} (location) and $b_{n}>0$ (scale) exist such that

$$
\frac{M_{n}-a_{n}}{b_{n}} \xrightarrow{d} Z \sim G, \quad n \rightarrow \infty, \quad(\star)
$$

with a nondegenerate limit distribution G, then G is of one of the three types of extreme-value distributions:

- (Reverse) Weibull: $\tilde{G}(z)=\exp \left(-(-x)_{+}^{-\alpha}\right)$ with $\alpha>0$ (with support $(-\infty, 0)$)
- Gumbel: $\tilde{G}(z)=\exp (-\exp (-x))$ (with support $\mathbb{R})$
- Fréchet: $\tilde{G}(z)=\exp \left(-x_{+}^{\alpha}\right)$ with $\alpha>0$ (with support $(0, \infty)$)

Remarks:

- Being of a certain type means being equal up to a location-scale transformation: $G(z)=\tilde{G}(a+b z)$ with some $b>0, a \in \mathbb{R}$. We can always choose a_{n}, b_{n} such that $G=\tilde{G}$.
- If convergence (\star) holds, we say that F is in the maximum domain of attraction (MDA) of G.
- Equivalently to (\star), we have $F^{n}\left(a_{n}+b_{n} z\right) \rightarrow G(z), n \rightarrow \infty, z \in \mathbb{R}$.

Sketch of the proof (1)

A key ingredient is the Extremal-Types Theorem, here copied from Embrechts, Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko \& Kolmogorov (1954).

Extremal-Types Theorem

Let $A, B, A_{1}, A_{2}, \ldots$ be random variables and $b_{n}>0, \beta_{n}>0$ and $a_{n}, \alpha_{n} \in \mathbb{R}$ be deterministic sequences. If the following convergence holds,

$$
\frac{A_{n}-a_{n}}{b_{n}} \xrightarrow{d} A, \quad n \rightarrow \infty,
$$

then the alternative convergence

$$
\begin{equation*}
\frac{A_{n}-\alpha_{n}}{\beta_{n}} \xrightarrow{d} B, \quad n \rightarrow \infty, \tag{1}
\end{equation*}
$$

holds if and only if

$$
\frac{b_{n}}{\beta_{n}} \rightarrow b \in[0, \infty), \quad \frac{a_{n}-\alpha_{n}}{\beta_{n}} \rightarrow a \in \mathbb{R}, \quad n \rightarrow \infty
$$

If (1) holds, then $B \stackrel{d}{=} b A+a$ with a, b being uniquely determined. Moreover, A is nondegenerate if and only if $b>0$, and the A and B are said to belong to the same type.

Sketch of the proof (2)

In the following, all convergences are understood for $n \rightarrow \infty$.
(1) If the convergence $F^{n}\left(a_{n}+b_{n} z\right) \rightarrow G(z)$ holds, then for any $t>0$,

$$
\begin{equation*}
F^{\lfloor n t\rfloor}\left(a_{\lfloor n t\rfloor}+b_{\lfloor n t\rfloor} z\right) \rightarrow G(z), \quad z \in \mathbb{R} \tag{2}
\end{equation*}
$$

(2) Observe that

$$
\begin{equation*}
F^{\lfloor n t\rfloor}\left(a_{n}+b_{n} z\right)=\left(F^{n}\left(a_{n}+b_{n} z\right)\right)^{\lfloor n t\rfloor / n} \rightarrow G^{t}(z) \tag{3}
\end{equation*}
$$

(3) Using the Extremal-Types Theorem, there exist deterministic functions $\gamma(t)>0$ and $\delta(t)$ such that

$$
\frac{b_{n}}{b_{\lfloor n t\rfloor}} \rightarrow \gamma(t), \quad \frac{a_{n}-a_{\lfloor n t\rfloor}}{b_{\lfloor n t\rfloor}} \rightarrow \delta(t), \quad t>0
$$

By considering (2) and (3), we get

$$
G^{t}(z)=G(\delta(t)+\gamma(t) z), \quad t>0 .
$$

(4) A consequence of the last equality is that for $s, t>0$,

$$
\gamma(s t)=\gamma(s) \gamma(t), \quad \delta(s t)=\gamma(t) \delta(s)+\delta(t)
$$

(5) The solutions of this functional equation are given by the three distribution functions of the reverse Weibull, Gumbel and Fréchet type.

Generalized Extreme-Value distribution (GEV)

The Generalized Extreme-Value distributions (GEV) uses threes parameter to jointly represent all possible limit distributions G :

$$
G(z)=\operatorname{GEV}(z ; \xi, \mu, \sigma)=\exp \left(-\left[1+\xi \frac{z-\mu}{\sigma}\right]_{+}^{-1 / \xi}\right) \quad(\star \star)
$$

- Shape parameter (or tail index) $\xi \in \mathbb{R}$, determining the extremal type:
- Reverse-Weibull MDA for $\xi<0$
- Gumbel MDA for $\xi=0$
- Fréchet MDA for $\xi>0$
- Location parameter $\mu \in \mathbb{R}$
- Scale parameter $\sigma>0$

For $\xi=0,(\star \star)$ is the limit for $\xi \rightarrow 0: G(z)=\exp (-\exp (-(z-\mu) / \sigma)), z \in \mathbb{R}$.
The $(\ldots)_{+}$-operator in ($\star \star$) means that the distribution G has positive density $d G / d z$ for values z satisfying $1+\xi \frac{z-\mu}{\sigma}>0$
\Rightarrow Support of the GEV: $A_{\xi, \sigma, \mu}= \begin{cases}(-\infty, \mu-\sigma / \xi), & \xi<0, \\ (-\infty, \infty), & \xi=0, \\ (\mu-\sigma / \xi, \infty), & \xi>0 .\end{cases}$

Illustration: GEV densities

In the MDA convergence (\star), we can always choose the normalizing sequences a_{n}, b_{n} such that $\mu=0, \sigma=1$, as for the probability densities shown below.

The three types have very different upper tail structure:

- Reverse-Weibull for $\xi<0$: light tails with finite upper endpoint (GEV finite upper endpoint is $\mu-\sigma / \xi$)
- Gumbel for $\xi=0$: exponential tail
- Fréchet for $\xi>0$: power-law tails, i.e., heavy tails

Empirical illustration

Histograms of i.i.d. samples $X_{i}, i=1,2, \ldots, n$, with different tail index ξ.

Examples of MDAs of common distributions:

- $\xi>0$: Pareto ($\xi=1 /$ shape $)$, student's $t(\xi=$ shape $)$
- $\xi=0$: Normal, Exponential, Gamma, Lognormal
- $\xi<0$: Uniform $(\xi=-1)$, Beta

Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with $\operatorname{cdf} F(x)=1-\exp (-x), x>0$.
The distribution F^{n} of the maximum $M_{n}=\max _{i=1}^{n} X_{i}$, where $X_{i} \stackrel{i i d}{\sim} F, i=1, \ldots, n$, is

$$
F^{n}(x)=(1-\exp (-x))^{n} .
$$

Can we find a_{n} and b_{n} such that $\lim _{n \rightarrow \infty} F^{n}\left(a_{n}+b_{n} x\right)$ exists and is nondegenerate?
For $x>-\log n$,

$$
\begin{aligned}
F^{n}(\log n+x) & =\left(1-\exp (-(\log n+x))^{n}=\left(1-\frac{\exp (-x)}{n}\right)^{n}\right. \\
& \rightarrow \exp (-\exp (-x)), \quad n \rightarrow \infty
\end{aligned}
$$

Conclusion:

- Using $a_{n}=\log (n)$ and $b_{n}=1$, we obtain $\lim _{n \rightarrow \infty} F^{n}\left(a_{n}+b_{n} x\right)=\exp (-\exp (-x))$ for any $x \in \mathbb{R}$.
- The exponential distribution is in the maximum domain of attraction of the standard Gumbel distribution, i.e., the GEV with $\xi=0, \mu=0, \sigma=1$.

Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:
Class of extreme-value limit distributions $G=$ Class of max-stable distributions

Max-stable distribution

A probability distribution G is called max-stable if for any $n \in \mathbb{N}$ there exist appropriate choices of deterministic normalizing sequences α_{n} and $\beta_{n}>0$ such that

$$
G^{n}\left(\alpha_{n}+\beta_{n} z\right)=G(z), \quad \text { for any } n \in \mathbb{N} .
$$

This also means that the MDA limit (\star) is exact (and not asymptotic) if F is max-stable.
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Threshold exceedances in a univariate sample

What are possible limits for threshold excesses

$$
X-u \quad \text { given } \quad X>u \quad ?
$$

Generalized Pareto limits for threshold exceedances

Consider iid X, X_{1}, X_{2}, \ldots where $X \sim F$
with upper endpoint $x^{\star}=\sup \{x \in \mathbb{R}: F(x)<1\} \in(-\infty, \infty]$.

Pickands-Balkema-de-Haan Theorem

Suppose that $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$ converges to a $\operatorname{GEV}(\xi, \mu, \sigma)$ distribution according to the Fisher-Tippett-Gnedenko theorem.
Equivalently, there exists a scaling function $\sigma(u)>0$ such that

$$
(X-u) / \sigma(u) \mid(X>u) \quad \rightarrow \quad Y, \quad u \rightarrow x^{\star}
$$

and Y follows the Generalized Pareto Distribution $\operatorname{GPD}\left(\xi, \sigma_{G P D}\right)$ given as

$$
\operatorname{GPD}\left(y ; \xi, \sigma_{G P D}\right)=\operatorname{Pr}(Y \leq y)=1-\left(1+\xi y / \sigma_{G P D}\right)_{+}^{-1 / \xi} \quad y>0
$$

with scale parameter $\sigma_{G P D}>0$.

- This result dates back to the 1970 s.
- As before, the case $\xi=0$ is interpreted as the limit for $\xi \rightarrow 0$:

$$
\operatorname{GPD}\left(y ; 0, \sigma_{G P D}\right)=1-\exp \left(-y / \sigma_{G P D}\right), \quad y>0
$$

(= Exponential distribution).

Sketch of the proof

We here sketch the proof of " \Rightarrow "
(Convergence of maxima leads to convergence of threshold excesses).
(1) Set $u_{n}=a_{n}+b_{n} \tilde{u}$ for \tilde{u} chosen in the support of the $\operatorname{GEV}(\xi, \mu, \sigma)$. Then,

$$
\begin{equation*}
\operatorname{Pr}\left(\left(X-u_{n}\right) / b_{n}>y \mid X>u_{n}\right)=\frac{1-F\left(a_{n}+b_{n}(y+\tilde{u})\right)}{1-F\left(a_{n}+b_{n} \tilde{u}\right)} . \tag{4}
\end{equation*}
$$

(2) On the one hand, the MDA condition $F^{n}\left(a_{n}+b_{n} z\right) \rightarrow G(z)$ implies

$$
\log F\left(a_{n}+b_{n} z\right) \approx \frac{1}{n} \log G(z), \quad \text { for large } n .
$$

On the other hand, since $F\left(a_{n}+b_{n} z\right) \approx 1$ as n increases, we can use the first-order approximation $\log (1+x) \approx x$ for small $|x|$, such that

$$
\log F\left(a_{n}+b_{n} z\right) \approx F\left(a_{n}+b_{n} z\right)-1
$$

Combining the two yields

$$
\begin{equation*}
1-F\left(a_{n}+b_{n} z\right) \approx-\frac{1}{n} \log G(z) \tag{5}
\end{equation*}
$$

(3) By using the approximation (5) for the numerator and denominator of (4), we get $\operatorname{Pr}\left(\left(X-u_{n}\right) / b_{n}>y \mid X>u_{n}\right) \rightarrow \frac{\log G(\tilde{u}+y)}{\log G(\tilde{u})}=1-\operatorname{GPD}\left(y ; \xi, \sigma_{G P D}\right), \quad n \rightarrow \infty ;$ with $\sigma_{G P D}=\sigma+\xi(\tilde{u}-\mu)>0$, and we can set $\sigma\left(u_{n}\right)=b_{n}$.

Illustration: GPD densities

The value of the tail index ξ characterizes the shape of the distribution. Here, $\sigma_{G P D}$ is fixed to 1 .

Peaks-over-threshold stability

By analogy with max-stability of GEV limit distributions for maxima, we have Peaks-Over-Threshold (POT) stability for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that $Y \sim \operatorname{GPD}\left(\xi, \sigma_{G P D}\right)$. Consider a new, higher threshold $\tilde{u}>0$ such that $\operatorname{GPD}\left(\tilde{u} ; \xi, \sigma_{G P D}\right)<1$. Then

$$
Y-\tilde{u} \mid(Y>\tilde{u}) \sim \operatorname{GPD}\left(\xi, \tilde{\sigma}_{G P D}\right), \quad \tilde{\sigma}_{G P D}=\sigma_{G P D}+\xi \tilde{u} .
$$

Exercice: Prove this using pencil + paper by showing

$$
\frac{1-\operatorname{GPD}\left(\tilde{u}+y ; \xi, \sigma_{G P D}\right)}{1-\operatorname{GPD}\left(\tilde{u} ; \xi, \sigma_{G P D}\right)}=1-\operatorname{GPD}\left(y ; \xi, \tilde{\sigma}_{G P D}\right)
$$

\Rightarrow Application of the POT approach to a GPD yields again a GPD!

For $\xi=0$, where the GPD is the exponential distribution, the POT stability is also known as the lack-of-memory property.
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Point-process convergence

The trinity of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X_{1}, X_{2}, \ldots of $X \sim F$, the following two statements are equivalent:
(1) The distribution F is in the maximum domain of attraction of the max-stable distribution G with support $A_{\xi, \sigma, \mu}$ for the normalizing sequences $a_{n} \in \mathbb{R}$ and $b_{n}>0$.
(2) For the normalizing sequences $a_{n} \in \mathbb{R}$ and $b_{n}>0$, we have the following point-process convergence with a locally finite Poisson-process process limit:

$$
\left\{\left(\frac{i}{n}, \frac{X_{i}-a_{n}}{b_{n}}\right), i=1, \ldots, n\right\} \rightarrow\left\{\left(t_{i}, P_{i}\right), \quad i \in \mathbb{N}\right\} \sim \operatorname{PPP}\left(\lambda_{1} \times \Lambda\right), \quad n \rightarrow \infty
$$

with intensity measure $\lambda_{1} \times \Lambda$ where λ_{1} is the Lebesgue measure on $(0,1)$.
If 1) and 2) hold, then $G(z)=\exp (-\Lambda[z ; \infty))$, and the exponent measure \wedge defined on $A_{\xi, \sigma, \mu}$ is characterized by its tail measure

$$
\Lambda[z, \infty)=-\log G(z)=\left\{\begin{array}{ll}
\left(1+\xi \frac{z-\mu}{\sigma}\right)^{-1 / \xi}, & \xi \neq 0 \\
\exp \left(\frac{z-\mu}{\sigma}\right), & \xi=0
\end{array}, \quad \mu \in \mathbb{R}, \sigma>0\right.
$$

Remark: Λ is singular at $\inf A_{\xi, \sigma, \mu}$.

Summary: The extreme-value trinity

We allow for affine-linear rescaling $\tilde{X}_{i}=\frac{X_{i}-b_{n}}{a_{n}}$ of the iid sample $X_{i}, i=1, \ldots, n$.

Maxima

$\operatorname{Pr}\left(\max _{i=1}^{n} \tilde{X}_{i} \leq z\right)$
$\rightarrow \exp (-\Lambda[z, \infty))$
Max-stable distr. (GEV)

Occurrence counts

$\operatorname{Pr}(N(E)=k) \rightarrow$
$\exp \left(-\left(\lambda_{1} \times \Lambda\right)(E)\right) \frac{\left(\lambda_{1} \times \Lambda\right)(E)^{k}}{k!}$
Poisson process

Threshold exceedances

$$
\rightarrow \Lambda[y, \infty) / \Lambda[u, \infty)
$$

Gen. Pareto distr. (GPD)

Exponent measure Λ possessing asymptotic stability:
for any event E and $c>0$, there are constants $\alpha(c) \in \mathbb{R}, \beta(c)>0$ such that

$$
c \times \Lambda(E)=\Lambda\left(\frac{E-\alpha(c)}{\beta(c)}\right)
$$

