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Plan for this course

Three sessions of two hours, with (very roughly) the following main topics:

e Theory for univariate extremes

e Theory for dependent extremes based on maxima and point processes

e Theory for dependent extremes based on threshold exceedances
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@ Introduction

@® Univariate Extreme-Value Theory
Maxima

Threshold exceedances

Point processes

Point processes

Spectral construction of max-stable processes

@ Perspectives

O Representations of dependent extremes using threshold exceedances
Application example: spatial temperature extremes in France

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances

© Representations of dependent extremes using maxima and point processes
Introduction to dependent extremes
Componentwise maxima



The origins of Extreme-Value Theory (EVT)

e A probabilistic theory with its origins in the first half of the 20th century:
o Fréchet (1927). Sur la loi de probabilité de I'écart maximum. Annales de la Société
Polonaise de Mathématique.

o Fisher, Tippett (1928). Limiting forms of the frequency distribution of the largest and
smallest member of a sample. Proceedings of the Cambridge Philosophical Society.

e von Mises (1936). La distribution de la plus grande de n valeurs. Revue Mathématique
de I'Union Interbalcanique

e Gnedenko (1943). Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics.

e Strong development of multivariate and process theory since the 1970s

e Statistical methods and applications

e Often at the origin of theoretical developments
(for example, Tippett's work for the cotton industry)

e Seminal monograph Statistics of Extremes (1958) of Gumbel
e Numerous applications since the 1980s
e Today, strong use for finance/insurance and climate/environment

e Typical goals:

® Estimate and extrapolate extreme-event probabilities
® Stochastically generate new extreme-event scenarios
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Extreme events
Extreme events are located in the upper or lower tail of the distribution:
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Observations

Without loss of generality, we focus on the extremes in the upper-tail.
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Classical asymptotic frameworks: Averages / Extremes

Consider independent and identically distributed (i.i.d.) random variables Xi, Xo, . ..

Averages S, = % S Xi

Sioi 7~ N(0,1)

Gaussian limit distribution
(Sum-stability)

Spatial extension:

Extremes (maxima) M, = max_, X;

Mnb_;an — Z ~ GEV (&) (tail index £ € R)

Extreme-value limit distribution
(Max-stability)

Spatial extension:
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The trinity of the three fundamental approaches

Three asymptotic approaches to study extreme events in an i.i.d. sample {X;}:

(1 : Mp = max?_; X; using blocks of size n
() above a high threshold u: (X; —u) | X; > u
® : N(E)=|{X; € E, i =1,...,n}| for extreme events E

Asymptotic theory
For

e increasing block size n,
e for increasing threshold u, and
e for more and more extreme event sets E,

we obtain coherent theoretical representations across the three approaches.

Maxima Exceedances Occurrences

N(E) = 10

|, | | LI




@® Univariate Extreme-Value Theory
Maxima
Threshold exceedances
Point processes
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The maximum of a sample

For a series of independent and identically distributed (iid) random variables
Xi~F, i=1,2,...

we consider the maximum

n
M, = max X; ~ F",
i=1

where

F™(x) = (F())"
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The fundamental extreme-value limit theorem

Fisher—Tippett—Gnedenko Theorem

Let X;, i = 1,2,...iid. If deterministic normalizing sequences a, (location) and
b, > 0 (scale) exist such that

M, — an

n

4 Z~G, n—oo, (%)

with a nondegenerate limit distribution G, then G is of one of the

o . G(z) = exp(—(—x)L%) with o > 0 (with support (—o0,0))
o . G(z) = exp(— exp(—x)) (with support R)
° . G(2) = exp(—x$) with o > 0 (with support (0, 00))

Remarks:

e Being of a certain type means being equal up to a location-scale transformation:
G(z) = G(a+ bz) with some b > 0, a € R. We can always choose a,, by such
that G = G.

e If convergence (%) holds, we say that

e Equivalently to (%), we have F"(a, 4+ bpz) — G(z), n — oo, z € R.
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Sketch of the proof (1)

A key ingredient is the , here copied from Embrechts,

Klueppelberg, Mikosch (1996). An early proof is due to Gnedenko & Kolmogorov
(1954).

Extremal-Types Theorem

Let A, B, A1, Ay, ... be random variables and b, > 0, 8, > 0 and a,, a, € R be
deterministic sequences. If the following convergence holds,

Apn—an d
— A, n — oo,
bn
then the alternative convergence
A, —an d
"% B, n— o, (1)
Bn
holds if and only if
an - an

bn
— — b € [0, 00),
B

n n

—acR, n— oo.

If (1) holds, then B 9 bA + a with a, b being uniquely determined. Moreover, A is
nondegenerate if and only if b > 0, and the A and B are said to belong to the same
type.
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Sketch of the proof (2)

In the following, all convergences are understood for n — oo.

©® If the convergence F"(a, + bnz) — G(z) holds, then for any t > 0,
FLnt] (aLntJ + bLntj z) = G(z), zé€eR, (2)
® Observe that
FLrtl(a, + bnz) = (F"(an + bpz))L"H/7 5 Gt(2). (3)

® Using the Extremal-Types Theorem, there exist deterministic functions y(t) > 0
and 6(t) such that

n— 4da n
P ), 2O s, s o
b ) b pt)

By considering (2) and (3), we get
G'(z) = G(6(t) ++(t)z), t>0.
O A consequence of the last equality is that for s, t > 0,
v(st) = v(s)v(t), (st) =~(t)d(s) + ().

® The solutions of this functional equation are given by the three distribution
functions of the reverse Weibull, Gumbel and Fréchet type.
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Generalized Extreme-Value distribution (GEV)

The uses threes parameter to jointly

represent all possible limit distributions G:

S 1V
G(Z) - GEV(Zv 57 M 0) — exp <_ [1 + &-—/JJ:| ) (**)
o 14

° (or ) £ € R, determining the extremal type:

e Reverse-Weibull MDA for £ < 0
e Gumbel MDA for £ =0
e Fréchet MDA for £ > 0

e Location parameter u € R

e Scale parameter ¢ > 0

For £ = 0, (xx) is the limit for £ — 0: G(z) = exp(—exp(—(z — pn)/0)), z € R.

The (...)+-operator in (xx) means that the distribution G has positive density dG/dz
for values z satisfying 1 +£%=£ > 0
(_007/1'_0-/5)) 5 < Oa

= Support of the GEV: A; , , = { (—o0, 0), £ =0,
(/’L_O-/€7OO)7 €>O



lllustration: GEV densities
In the MDA convergence (%), we can always choose the normalizing sequences a,, bp
such that 4 = 0, 0 = 1, as for the probability densities shown below.
The three types have very different upper tail structure:

e Reverse-Weibull for £ < 0: light tails with finite upper endpoint
(GEV finite upper endpoint is u — o /&)

e Gumbel for £ = 0: exponential tail

e Fréchet for £ > 0: power-law tails, i.e., heavy tails

0.4
0.3 Tail index
. 0.5
x
> (.25
g’ 0.2 0
S 0.
a — (.25
0.5
0.1
0.0
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Empirical illustration

Histograms of i.i.d. samples X;, i = 1,2,...,n, with different tail index &.
Heavy tail Exponential tail Bounded tail
£>0 §=0 £<0

Examples of MDAs of common distributions:
o £ > 0: Pareto (¢ = 1/shape), student’s t (£ = shape)

14 18 -5 0 5 25 5.0
Observations Observations Observations

e £ = 0: Normal, Exponential, Gamma, Lognormal
o £ < 0: Uniform (£ = —1), Beta



Example: GEV limit of the exponential distribution

Consider the standard exponential distribution with cdf F(x) =1 — exp(—x), x > 0.

The distribution F" of the maximum M, = maxi_, X;, where X; ~ F,i=1,...,n,is

F(x) = (1 — exp(—x))".

Can we find a, and b, such that lim,_,o, F"(a, + bsx) exists and is nondegenerate?

For x > — log n,

F"(log n + x) = (1 — exp(—(log n + x))" = <1 - M>n

n

— exp(—exp(—x)), n— oo

Conclusion:

e Using a, = log(n) and b, = 1, we obtain
limp— 0o F"(an + bnx) = exp(— exp(—x)) for any x € R.

e The exponential distribution is in the
, i.e., the GEV with ¢ =0, u =0, o = 1.
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Max-stability

A key theoretical characterisation of extreme-value limit distributions is as follows:

Class of extreme-value limit distributions G = Class of

Max-stable distribution

A probability distribution G is called if for any n € N there exist
appropriate choices of deterministic normalizing sequences a, and 3, > 0 such that

G"(an + Bnz) = G(z), for anyn € N.

This also means that the MDA limit (%) is exact (and not asymptotic) if F is
max-stable.
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Threshold exceedances in a univariate sample

° o %, o0

°

.... .. ° : .‘...: ® |
oe? o, g %o o oe® ©
:' \&Ol' 2 *° &° o8
"' ‘).’ 0® wehPe o 0 000, %0

What are possible limits for threshold excesses

X—u given X>u 7
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Generalized Pareto limits for threshold exceedances

Consider iid X, X1, X5, ... where X ~ F
with upper endpoint x* =sup{x € R: F(x) < 1} € (—o0, xx].

Pickands—Balkema—de-Haan Theorem

Suppose that M, = max(Xi, ..., Xp) converges to a GEV (&, u, o) distribution
according to the Fisher—Tippett—Gnedenko theorem.
Equivalently, there exists a scaling function o(u) > 0 such that

(X—u)/o(u)|(X>u) — Y, u—x~,
and Y follows the GPD(&,06pp) given as

GPD(y; &, 06pp) = Pr(Y <y)=1-(1+ fify/acpo)ll/g y >0,

with scale parameter ogpp > 0.

e This result dates back to the 1970s.
e As before, the case £ = 0 is interpreted as the limit for £ — O:

GPD(y;0,06pp) =1 —exp(—y/ogep), y >0

(= Exponential distribution).
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Sketch of the proof
We here sketch the proof of “=*“
(Convergence of maxima leads to convergence of threshold excesses).

©® Set up, = ap + byl for i chosen in the support of the GEV (&, i, o). Then,

1= Fan + boly + 8)

P X_n bn> X> —
(X = un) /b >y | X > wn) = =2

(4)

® On the one hand, the MDA condition F"(an + bpz) — G(z) implies
1
log F(an + brz) =~ — log G(z), for large n.
n

On the other hand, since F(a, + bhz) =~ 1 as n increases, we can use the
first-order approximation log(1 4+ x) =~ x for small |x|, such that

log F(an + bnz) =~ F(an + bpz) — 1.

Combining the two yields

1
1 — F(an+ bnz) = ——log G(2). (5)
n
® By using the approximation (5) for the numerator and denominator of (4), we get
log G (I
Pr((X—un)/bn >y | X > up) — Ogl; (g(“f)” — 1-GPD(y;€,06pp), N — 00;
og G (i

with ogpp = o + &(id — ) > 0, and we can set o(un) = by.
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[llustration: GPD densities

The value of the tail index & characterizes the shape of the distribution.
Here, ogpp is fixed to 1.
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Tail index
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Peaks-over-threshold stability

By analogy with of GEV limit distributions for maxima, we have
for limit distributions of threshold exceedances.

Peaks-Over-Threshold stability of the GPD

Suppose that Y ~ GPD(§,06pp). Consider a new, higher threshold i > 0 such that
GPD(d;€&,06pp) < 1. Then

Y —i| (Y > i)~ GPD({,66pp), Gepp = ogpp + &l

Exercice: Prove this using pencil 4+ paper by showing

1 - GPD(i+y; & 06pD)

— 11— GPD(y: £, 5
T~ GPD(7: ¢, 0aro) ie:oaro)

= Application of the POT approach to a GPD yields again a GPD!

For & = 0, where the GPD is the exponential distribution, the POT stability is also
known as the
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Point-process convergence
The of univariate extreme-value limits is completed by point patterns.

Theorem (Point-process convergence)

For i.i.d. copies X1, X>,... of X ~ F, the following two statements are equivalent:

® The distribution F is in the maximum domain of attraction of the max-stable
distribution G with support A¢ , ,, for the normalizing sequences a;, € R and
b, > 0.

® For the normalizing sequences a, € R and b, > 0, we have the following
point-process convergence with a locally finite Poisson-process process limit:

X — . .
{(L, b a”), l:1,...,n}—>{(t,-,P,-), i € N} ~ PPP(A1 xA), n— oo,
n n

with intensity measure A\; X A where )1 is the Lebesgue measure on (0, 1).

If 1) and 2) hold, then G(z) = exp(—A[z; >0)), and the defined
on A¢ ., Is characterized by its tail measure

(1+g%)_1/€, £ 40

N[z, 00) = —log G(z) = exp(Z;FL), §:07

uweR, g>0.

Remark: A is singular at inf Az , ;.
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Summary: The extreme-value trinity

We allow for affine-linear rescaling X; = Xizbn of the iid sample X;, i =1,...,n.

Maxima Occurrence counts Threshold exceedances
N(E) = 10
ll | ‘ |l|l |II”II
|
i {

Pr(max?_, X; < z) Pr(N(E) = k) — Pr(Xi—u>y| Xi > u)
— exp (_/\[27 OO)) exp(— (A1 X /\)(E))M — /\[y, OO)//\[U, OO)

N\ possessing :
for any event E and ¢ > 0, there are constants «a(c) E R, B(c) > 0 such that

¢ x A(E) :A(Eg(—j)(c))




