1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

A Representations of dependent extremes using threshold exceedances Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

6 Perspectives

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes Introduction to dependent extremes

Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Practical motivation for dependent extremes

Often, several variables are stochastically dependent, for example in environmental and climatic data.

Examples:

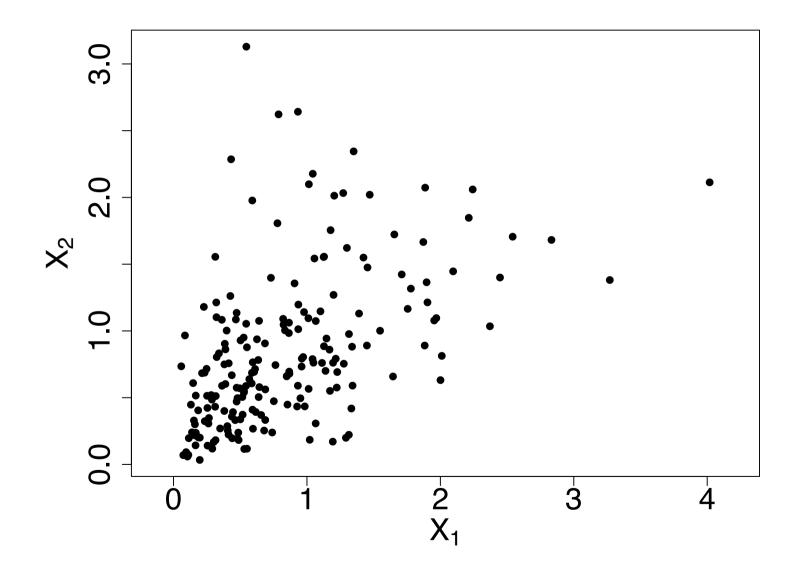
- Different physical variables observed at the same location, such as minimum temperature, maximum temperature, precipitation, wind speed.
- The same physical variable observed at different locations, such as precipitation at different locations of a river catchment.

Many interesting aspects of dependent extremes:

- Aggregation of extreme observations in several components (example: cumulated precipitation ⇒ flood risk)
- **Spatial extent** and **temporal duration** of environmental extreme events
- Reliability: simultaneous failure of several critical components

Illustration: a bivariate sample with dependence

Scatterplot of an iid bivariate sample $X_i = (X_{i,1}, X_{i,2}), i = 1, 2, ..., n$.



A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are structurally quite similar.

For indexing the variables of interest,

• we can either put focus on the multivariate aspect and use indices 1, ..., *d* for the *d* components of a random vector

$$(X_1,\ldots,X_d)$$

(and we can write $D = \{1, \ldots, d\}$ for the domain),

• or we put focus on the process aspect (for example, when working with a random field on a nonempty domain $D \subset \mathbb{R}^k$) and use notation such as

$$\{X(s), s \in D\}$$

for the whole process, or

$$(X(s_1),\ldots,X(s_d))$$

for the multivariate vector of variables observed at d locations $s_1, \ldots, s_d \subset \mathbb{R}^k$.

When the distinction is important, we point it out explicitly (for example, for "functional convergence" in a space of functions with continuous sample paths defined over a compact domain D).

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes

Componentwise maxima

Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Componentwise maxima of random vectors

Consider a sequence of iid random vectors

$$\boldsymbol{X}_i = (X_{i,1}, \ldots, X_{i,d}) \stackrel{d}{=} \boldsymbol{X} \sim F_{\boldsymbol{X}},$$

where F_X is the joint distribution of the components of X:

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = F_{\boldsymbol{X}}(x_1, \ldots, x_d) = \Pr(X_1 \leq x_1, \ldots, X_d \leq x_d)$$

The componentwise maximum

$$\boldsymbol{M}_n = (M_{n,1}, \ldots, M_{n,d}) = \left(\max_{i=1}^n X_{i,1}, \ldots, \max_{i=1}^n X_{i,d}\right)$$

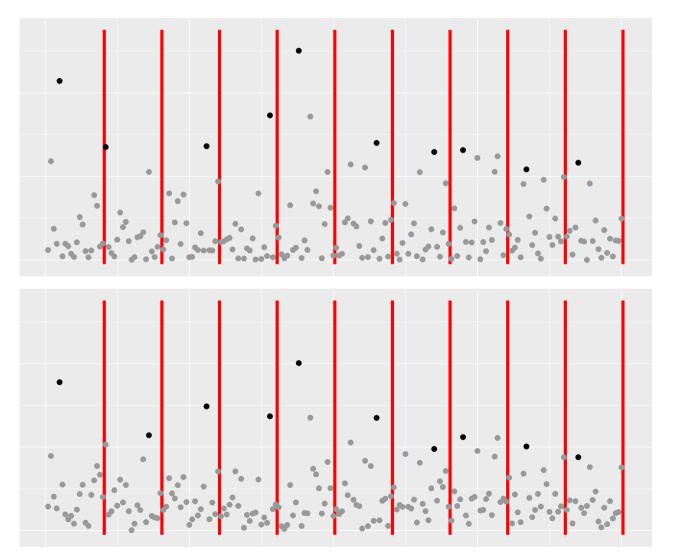
has distribution $F_{\boldsymbol{X}}^n$, that is, for $\boldsymbol{x} = (x_1, \ldots, x_d)$,

$$F_{X}^{n}(x) = (F_{X}(x))^{n} = \Pr(X_{i,1} \le x_{1}, \dots, X_{i,d} \le x_{d}, i = 1, \dots, n)$$

 \bigwedge The componentwise maximum M_n can be composed of values $X_{i,j}$ with different indices *i*.

Illustration: bivariate componentwise block maxima

A bivariate series $X_i = (X_{i,1}, X_{i,2})$ (with strong cross-correlation) and its componentwise maxima within the blocks separated by red lines. Most but not all of the maxima occur at the same time in the two series.



< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > の < @

Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (*d*-dimensional) distribution *G* is called max-stable if there exist deterministic vector sequences $\alpha_n = (\alpha_{n,1}, \ldots, \alpha_{n,d})$ and $\beta_n = (\beta_{n,1}, \ldots, \beta_{n,d}) > 0$, $n \in \mathbb{N}$, such that

$$G^n(oldsymbol{lpha}_n+oldsymbol{eta}_noldsymbol{z})=G(oldsymbol{z}),\quadoldsymbol{z}\in\mathbb{R}^d,$$

If all finite-dimensional distributions of a stochastic process $Z = \{Z(s), s \in D \subset \mathbb{R}^k\}$ are max-stable, we call Z a max-stable process.

Equivalently, if $X_1 \sim G$, then the componentwise maximum over *n* iid copies of X_1 satisfies

$$rac{oldsymbol{M}_n-oldsymbol{lpha}_n}{oldsymbol{eta}_n} \stackrel{d}{=} oldsymbol{X}_1, \quad n\in\mathbb{N}.$$

▲ Multivariate max-stability is stronger than max-stability of the univariate marginal distributions.

• If $Z = (Z_1, \ldots, Z_d) \sim G$ with $Z_j \sim G_j$, then the univariate marginal distributions G_j are max-stable:

$$Gj(z_j) = GEV(z_j; \xi_j, \mu_j, \sigma_j) = Pr(Z_j \leq z_j) = G(\infty, \dots, \infty, z_j, \infty, \dots, \infty).$$

Additionally, max-stability of G implies a stability property for the dependence structure.

Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction

If there exist deterministic normalizing vector sequences $a_n = (a_{n,1}, \ldots, a_{n,d})$ and $b_n = (b_{n,1}, \ldots, b_{n,d}) > 0$, $n \in \mathbb{N}$, such that the following convergence holds,

$$\frac{\boldsymbol{M}_n-\boldsymbol{a}_n}{\boldsymbol{b}_n}\to \boldsymbol{Z}=(Z_1,\ldots,Z_d)\sim \boldsymbol{G},\quad n\to\infty,$$

where Z has non-degenerate marginal distributions, then G is a multivariate extreme-value distribution, that is, a multivariate max-stable distribution.

If all finite-dimensional distributions of a process $X = \{X(s), s \in D \subset \mathbb{R}^k\}$ satisfy the above convergence, then $Z = \{Z(s), s \in D \subset \mathbb{R}^k\}$ is a max-stable process.

(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of finite-dimensional distributions. There also exist results for convergence in spaces of continuous functions over a compact domain D.

Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the marginal distributions F_j of X_j and G_j of Z_j .

• Often, the unit Fréchet marginal distribution is used:

$$G_j^\star(z) = \operatorname{GEV}(z; \ \xi = 1, \mu = 1, \sigma = 1) = \exp\left(-rac{1}{z}
ight), \quad z > 0.$$

 We can transform any continuous random variable X ~ F towards a variable with unit Fréchet distribution as follows: X^{*} = − ¹/_{log F(X)} ~ G^{*}.

• If
$$X_j \sim \operatorname{GEV}(\xi, \mu, \sigma)$$
, then $X_j^{\star} = \left(1 + \xi \frac{X - \mu}{\sigma}\right)^{1/\xi} \sim G_j^{\star}$.

 If G is a multivariate max-stable distribution, we write G* for the corresponding max-stable distribution with unit Fréchet margins. We call G* a simple max-stable distribution.

We call representations simple if they are based on the marginal *-scale.

Simple Maximum Domain of Attraction

We use the following notation:
$$T_{\xi,\mu,\sigma}(z) = \left(1 + \xi \frac{z-\mu}{\sigma}\right)^{1/\xi}$$
.

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector $X \sim F_X$. The following two statements are equivalent:

- **1** The distribution F_X is in the MDA of a multivariate max-stable distribution G.
- **2** The following two properties hold jointly:
 - **1** Marginal convergence: Each component X_j is in the univariate MDA of a $\operatorname{GEV}(\xi_j, \mu_j, \sigma_j)$ distribution.
 - **2 Convergence on the standardized scale:** The distribution of the marginally standardized random vector

$$\boldsymbol{X}^{\star} = (X_1^{\star}, \ldots, X_d^{\star}) \sim F_{\boldsymbol{X}^{\star}}$$

satisfies

$$F^n_{\boldsymbol{X}^{\star}}(n\,\boldsymbol{z}) \to G^{\star}(\boldsymbol{z}), \quad n \to \infty,$$

i.e., F_{X^*} is in the MDA of G^* , where

$$G(z_1,\ldots,z_d)=G^*(T_{\xi_1,\mu_1,\sigma_1}(z_1),\ldots,T_{\xi_d,\mu_d,\sigma_d}(z_d)).$$

With standardized marginal distributions, we can choose normalizing vector sequences $\boldsymbol{a}_n^{\star} = (0, \ldots, 0)$ and $\boldsymbol{b}_n^{\star} = (n, \ldots, n)$.

Some remarks about max-stable dependence

- There is no exhaustive representation of all simple max-stable distributions G^{*} using a finite number of parameters.
- We can write G^* using the exponent function V^* ,

$$G^{\star}(\boldsymbol{z}) = \exp(-V^{\star}(\boldsymbol{z})), \quad \boldsymbol{z} > \boldsymbol{0},$$

where $t \times V^*(tz) = V^*(z)$ ((-1)-homogeneity).

• We say that two variables X_1 and X_2 are asymptotically independent if

$$G(z_1, z_2) = G_1(z_1) \times G_2(z_2),$$

and in this case

$$G^{\star}(z_1, z_2) = \exp(-(1/z_1 + 1/z_2)) = \exp(-1/z_1) \times \exp(-1/z_2), \quad z_1, z_2 > 0.$$

< ロ > < 団 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

Example: multivariate logistic distribution

A large variety of parametric multivariate max-stable distribution has been proposed.

The multivariate logistic model was introduced by Emil J. Gumbel in 1960 and can be defined through its exponent function

$$V^{\star}(\mathbf{z}) = \left(z_1^{-1/\alpha} + \ldots + z_d^{-1/\alpha}\right)^{\alpha}, \quad \mathbf{z} > \mathbf{0},$$

such that

$$G^{\star}(z_1,\ldots,z_d) = \exp\left(-\left(z_1^{-1/\alpha}+\ldots+z_d^{-1/\alpha}\right)^{\alpha}\right), \quad \boldsymbol{z} > \boldsymbol{0}$$

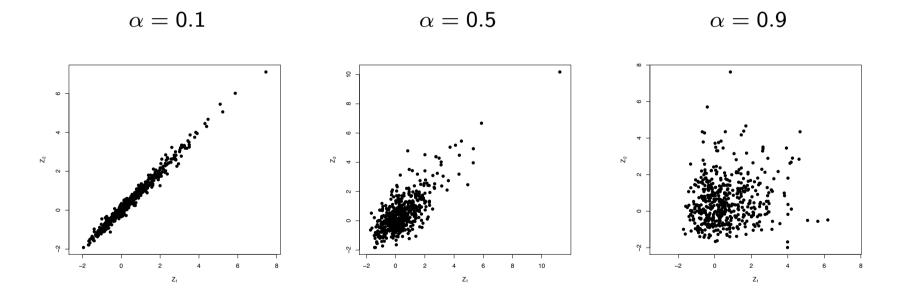
with parameter 0 < $\alpha \leq 1$ and

- perfect dependence for $\alpha \rightarrow 0$;
- independence for $\alpha = 1$.

Example: Simulations of bivariate logistic distribution

Sample size n = 500

Bivariate scatterplots show log Z^{\star} (standard Gumbel margins) with $Z^{\star} \sim G^{\star}$



Example: Huesler-Reiss distribution

Huesler–Reiss distributions are related to multivariate Gaussian distributions. Consider a multivariate Gaussian vector \tilde{Y} .

Bivariate case: the simple max-stable distribution has parameter $\gamma_{12} = \operatorname{Var}(\tilde{Y}_2 - \tilde{Y}_1) > 0$ and for $z_1, z_2 > 0$,

$$G^{\star}(z_1, z_2) = \exp\left(-\frac{1}{z_1}\Phi\left(\frac{\sqrt{\gamma_{12}}}{2} + \frac{1}{\sqrt{\gamma_{12}}}\log\frac{z_2}{z_1}\right) - \frac{1}{z_2}\Phi\left(\frac{\sqrt{\gamma_{12}}}{2} + \frac{1}{\sqrt{\gamma_{12}}}\log\frac{z_1}{z_2}\right)\right)$$

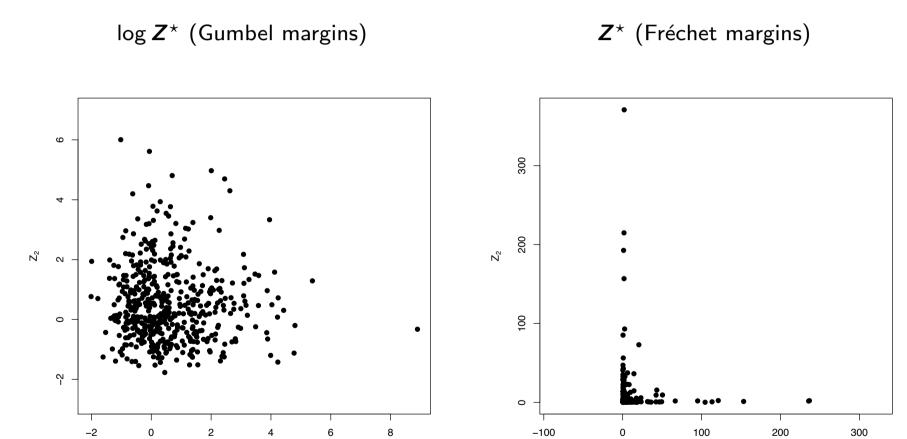
(with standard Gaussian cdf Φ) \Rightarrow independence for $\gamma_{12} \rightarrow \infty$, perfect dependence for $\gamma_{12} \rightarrow 0$

The general multivariate distribution G^* is parametrized by d(d-1)/2 variogram values $\gamma_{j_1,j_2} = \operatorname{Var}(\tilde{Y}_{j_2} - \tilde{Y}_{j_1})$ for $1 \leq j_1 < j_2 \leq d$.

Example: Simulations of the Huesler-Reiss distribution

Sample size n = 500Relatively weak dependence

 Z_1

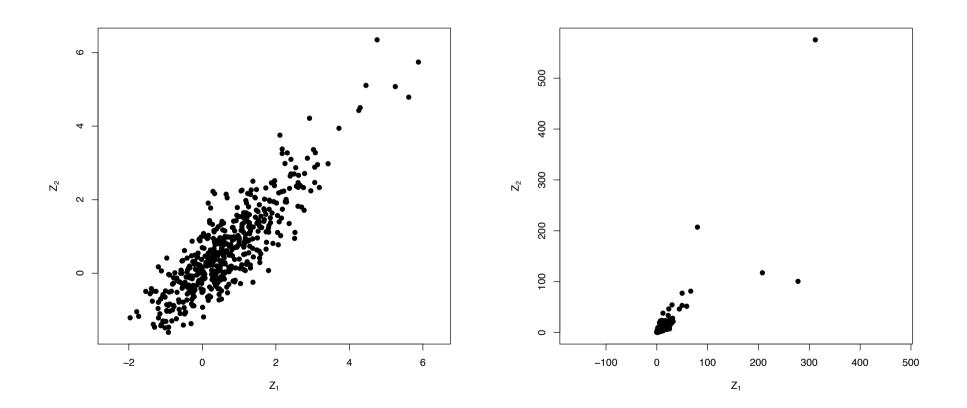


 Z_1

Example, cont'd

Sample size n = 500Relatively strong dependence

 $\log Z^{\star}$ (Gumbel margins)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima

Point processes

Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies X_1, X_2, \ldots of a random vector $X = (X_1, \ldots, X_d) \sim F$, the following two statements are equivalent:

- **1** The distribution F is in the multivariate MDA of the max-stable distribution G for the normalizing sequences $\boldsymbol{a}_n \in \mathbb{R}^d$ and $\boldsymbol{b}_n > \boldsymbol{0}$.
- **2** For the normalizing sequences $a_n \in \mathbb{R}^d$ and $b_n > 0$, we have the following point-process convergence with a locally finite Poisson point process limit:

$$\left\{\frac{\boldsymbol{X}_{i}-\boldsymbol{a}_{n}}{\boldsymbol{b}_{n}}, \ i=1,\ldots,n\right\} \rightarrow \left\{\boldsymbol{P}_{i}, \ i\in\mathbb{N}\right\} \sim \operatorname{PPP}(\Lambda), \quad n\to\infty,$$

with intensity measure Λ .

If 1) and 2) hold, then $G(z) = \exp(-V(z))$ with

$$V(\mathbf{z}) = \Lambda\left((-\infty, \mathbf{z}]^{C}\right),$$

where the exponent measure Λ is defined on $A_{\Lambda} = \left(\overline{A}_{\xi_1,\mu_1,\sigma_1} \times \ldots \times \overline{A}_{\xi_d,\mu_d,\sigma_d}\right) \setminus \boldsymbol{u}_{\star}$, with the marginal GEV parameters $\xi_j, \mu_j, \sigma_j, j = 1, \ldots, d$, where the lower endpoint

$$oldsymbol{u}_{\star} = \left(\inf A_{\xi_1,\mu_1,\sigma_1},\ldots,\inf A_{\xi_d,\mu_d,\sigma_d}
ight)$$

is excluded.

Simple representation with standardized margins

Specifically, the convergence of componentwise maxima and of point patterns is equivalent on the simple scale using standardized marginal distributions in X^* .

Recall: Standardized marginal scale

- X_j^{*} = −1/log F_j(X_j) (or any other probability integral transform ensuring X_j^{*} ≥ 0 and x × Pr(X_j^{*} > x) → 1 as x → ∞)
- Normalizing sequences on standardized scale are $\boldsymbol{a}_n = \boldsymbol{0}$ and $\boldsymbol{b}_n = (n, \dots, n)$
- GEV margins of G^* are unit Fréchet $G_j^*(z_j) = \exp(-1/z_j)$, $z_j > 0$ ($\xi_j = 1$, $\mu_j = 1$, $\sigma_j = 1$).

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set $B \subset A_{\Lambda}$, the simple exponent measure Λ^{\star} satisfies

$$\Lambda(B) = \Lambda^{\star}(B_{\boldsymbol{\xi},\boldsymbol{\mu},\boldsymbol{\sigma}})$$

where $B_{\boldsymbol{\xi},\boldsymbol{\mu},\boldsymbol{\sigma}} = \{ (T_{\xi_1,\mu_1,\sigma_1}(x_1),\ldots,T_{\xi_d,\mu_d,\sigma_d}(x_d)) \mid (x_1,\ldots,x_d) \in B \}$. The simple measure Λ^* is defined on $A_{\Lambda^*} = [0,\infty)^d \setminus \mathbf{0}$ and is (-1)-homogeneous, that is, for any Borel set $B \subset A_{\Lambda^*}$, we have

$$t \times \Lambda^{\star}(tB) = \Lambda^{\star}(B), \quad t > 0.$$

Bivariate illustration of asymptotic stability $(D = \{1, 2\})$

Simple scale

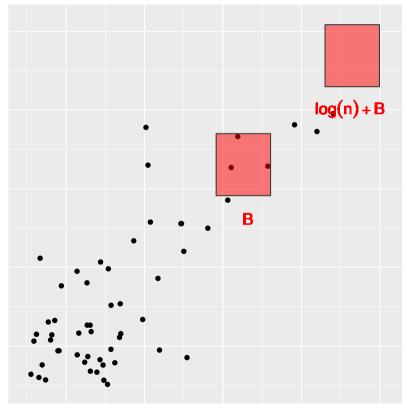
$$(\xi = (1, 1), \mu = (1, 1), \sigma = (1, 1))$$

 $\alpha_n = (n, n), \beta_n = (0, 0)$
 $n \times \Lambda^*(nB) = \Lambda^*(B)$

Standard exponential scale $(\boldsymbol{\xi}=(0,0), \boldsymbol{\mu}=(0,0), \boldsymbol{\sigma}=(1,1))$

$$\alpha_n = (1, 1), \ \beta_n = (\log n, \log n)$$

 $n \times \Lambda(\log(n) + B) = \Lambda(B)$



The trinity: three classical multivariate formulations

- The trinity of the three classical limit also holds in the multivariate setting.
- For threshold exceedances, a standard approach is to condition on an exceedance in at least one of the *d* components.
- To avoid technical notation, we focus on the simple setting.

Theorem

The following three convergences are equivalent:

• Point-process convergence:

$$\left\{\frac{\boldsymbol{X}_{i}^{\star}}{n}, \ i=1,\ldots,n\right\} \to \{\boldsymbol{P}_{i}^{\star}, \ i\in\mathbb{N}\}\sim\operatorname{PPP}(\Lambda^{\star}), \quad n\to\infty.$$

• Convergence of componentwise maxima:

$$\frac{\boldsymbol{M}_n^{\star}}{n} \rightarrow \boldsymbol{Z}^{\star} \sim \boldsymbol{G}^{\star}, \quad n \rightarrow \infty,$$

with $G^{\star}(z) = \exp(-V^{\star}(z))$ where $V^{\star}(z) = \Lambda^{\star}([0, z]^{C})$.

• Peaks-Over-Threshold convergence:

$$\frac{\boldsymbol{X}^{\star}}{u} \mid \left(\max_{j=1}^{d} X_{j}^{\star} > u\right) \to \boldsymbol{Y}^{\star} \sim \frac{\Lambda^{\star}(\cdot \cap [\mathbf{0}, \mathbf{1}]^{C})}{\Lambda^{\star}\left([\mathbf{0}, \mathbf{1}]^{C}\right)}, \quad u \to \infty.$$

Remarks about the functional setting

- The trinity of limits also holds in the functional setting (e.g., Dombry & Ribatet, 2016).
- Usually one considers $\boldsymbol{X} \in \mathcal{C}(D)$ with compact domain D.
- One has to appropriately define weak convergence in a Banach function space.

1 Introduction

2 Univariate Extreme-Value Theory

Maxima Threshold exceedances Point processes

3 Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes Componentwise maxima Point processes Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances Multivariate and functional threshold exceedances Application example: spatial temperature extremes in France

5 Perspectives

The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process $\{P_i^{\star}, i \in \mathbb{N}\}$ with simple ((-1)-homogeneous) intensity measure Λ^{\star} can be constructed as follows:

$$\{P_i^{\star}(s), i \in \mathbb{N}\} = \{R_i W_i(s), i \in \mathbb{N}\}\$$

where $R_i = 1/U_i$ and

- $0 < U_1 < U_2 < ...$ are the points of a unit-rate Poisson process on $[0,\infty)$, and
- $W_i = \{W_i(s)\}$ are iid nonnegative random functions, independent of $\{U_i\}$, with $\mathbb{E}W_i(s) = 1$ and $\mathbb{E}W_i(s)^{1+\varepsilon} < \infty$ for some $\varepsilon > 0$.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

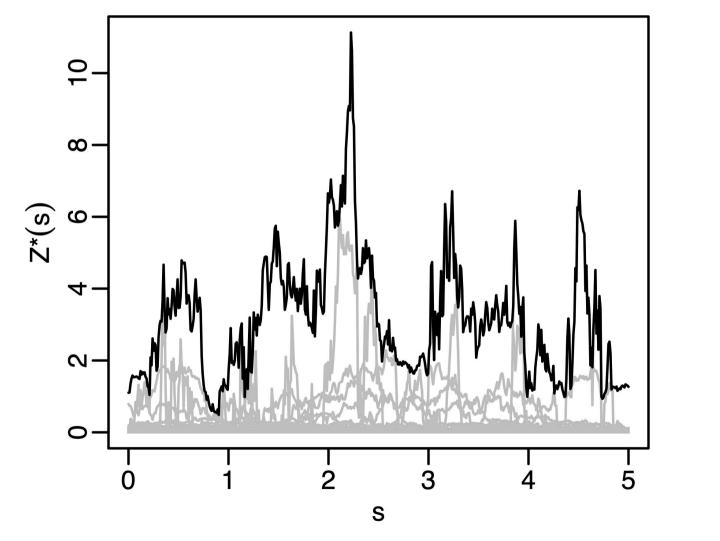
With notations as above, any simple max-stable process Z^* can be constructed as

$$Z^{\star}(s) = \max_{i \in \mathbb{N}} R_i W_i(s),$$

and any such construction is a simple max-stable process.

Illustration: simple max-stable construction

- In gray, "points" P_i^{\star} of the Poisson process on D = [0, 5]
- Max-stable process is the componentwise maximum (in black)



Simulation based on the spectral representation

If it is simple to simulate from the distribution F_W of the spectral process W, we can draw samples from the simple max-stable process Z^* .

Exact simulation

If $P(W_j \le w_0) = 1$ for some threshold value $0 < w_0 < \infty$, j = 1, ..., d, then we can perform exact simulation of Z^* (even if $Z_j^* = \max_{i \in \mathbb{N}} R_i W_{ij}$ is defined as a maximum over an infinite number of components):

1 set
$$m = 1$$

2 generate $E_m \sim \operatorname{Exp}(1)$
3 generate $W_m = (W_{m1}, \dots, W_{md})^T \sim F_W$
4 set $Z^* = (Z_1^*, \dots, Z_d^*)^T$ with $Z_j^* = \max_{i=1,\dots,m} \frac{W_{ij}}{\sum_{k=1}^i E_k}$ for $j = 1, \dots, d$
5 IF $\frac{w_0}{\sum_{k=1}^m E_k} \leq \min_{j=1,\dots,d} Z_j^*$ RETURN Z^*
ELSE set $m = m + 1$ and GO TO 2

Remarks:

- If the distribution of W_j is not finitely bounded, we can fix w_0 such that $P(W_j > y_0)$ becomes very small and perform approximation simulation.
- Even with unbounded W_j , exact simulation remains possible for many models using different algorithms (see the review of Oesting, Strokorb, 2022).

Example: Log-Gaussian spectral processes

A possible construction uses a centered Gaussian process $\tilde{W}(s)$ with variance function $\sigma^2(s)$ and sets

$$W(s) = \exp(\tilde{W}(s) - \sigma^2(s)/2)$$

 \Rightarrow A class of popular max-stable models:

- Multivariate: Huesler–Reiss distributions
- Spatial: Brown–Resnick processes

Remark: The distribution of the simple max-stable process $Z^* = \{Z^*(s), s \in D\}$ depends only on the variogram

$$\gamma(s_1,s_2) = \operatorname{Var}(ilde{W}(s_2) - ilde{W}(s_1)), \quad s_1,s_2 \in D_2$$

Illustration: Simulation of Brown–Resnick processes

Two realisation of a spatial Brown-Resnick process (obtained using the rmaxstab function of the SpatialExtremes package) Simulation on a grid 20×20 (such that d = 400) in the square $[0, 10]^2$.

Illustration: process $\log(Z^*(s))$ (with standard Gumbel margins)

