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Practical motivation for dependent extremes

Often, several variables are stochastically dependent,
for example in environmental and climatic data.

Examples:

• Di↵erent physical variables observed at the same location, such as minimum
temperature, maximum temperature, precipitation, wind speed.

• The same physical variable observed at di↵erent locations, such as precipitation
at di↵erent locations of a river catchment.

Many interesting aspects of dependent extremes:

• Aggregation of extreme observations in several components
(example: cumulated precipitation ) flood risk)

• Spatial extent and temporal duration of environmental extreme events

• Reliability: simultaneous failure of several critical components
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Illustration: a bivariate sample with dependence
Scatterplot of an iid bivariate sample Xi = (Xi,1,Xi,2), i = 1, 2, . . . , n.
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A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are
structurally quite similar.

For indexing the variables of interest,

• we can either put focus on the multivariate aspect and use indices 1, . . . , d for
the d components of a random vector

(X1, . . . ,Xd )

(and we can write D = {1, . . . , d} for the domain),

• or we put focus on the process aspect (for example, when working with a random
field on a nonempty domain D ⇢ Rk ) and use notation such as

{X (s), s 2 D}

for the whole process, or
(X (s1), . . . ,X (sd ))

for the multivariate vector of variables observed at d locations s1, . . . , sd ⇢ Rk .

When the distinction is important, we point it out explicitly (for example, for
“functional convergence” in a space of functions with continuous sample paths defined
over a compact domain D).
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Componentwise maxima of random vectors

Consider a sequence of iid random vectors

Xi = (Xi,1, . . . ,Xi,d )
d
= X ⇠ FX ,

where FX is the joint distribution of the components of X :

FX (x) = FX (x1, . . . , xd ) = Pr(X1  x1, . . . ,Xd  xd )

The componentwise maximum

Mn = (Mn,1, . . . ,Mn,d ) =

✓
n

max
i=1

Xi,1, . . . ,
n

max
i=1

Xi,d

◆

has distribution Fn
X , that is, for x = (x1, . . . , xd ),

Fn
X (x) = (FX (x))n = Pr(Xi,1  x1, . . . ,Xi,d  xd , i = 1, . . . , n)

B The componentwise maximum Mn can be composed of values Xi,j with di↵erent
indices i .
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Illustration: bivariate componentwise block maxima
A bivariate series Xi = (Xi,1,Xi,2) (with strong cross-correlation) and its
componentwise maxima within the blocks separated by red lines. Most but not all of
the maxima occur at the same time in the two series.
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Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (d-dimensional) distribution G is called max-stable if there exist
deterministic vector sequences ↵n = (↵n,1, . . . ,↵n,d ) and �n = (�n,1, . . . ,�n,d ) > 0,
n 2 N, such that

Gn(↵n + �nz) = G(z), z 2 Rd .

If all finite-dimensional distributions of a stochastic process Z = {Z(s), s 2 D ⇢ Rk}
are max-stable, we call Z a max-stable process.

Equivalently, if X1 ⇠ G , then the componentwise maximum over n iid copies of X1

satisfies
Mn �↵n

�n

d
= X1, n 2 N.

B Multivariate max-stability is stronger than max-stability of the univariate marginal
distributions.

• If Z = (Z1, . . . ,Zd ) ⇠ G with Zj ⇠ Gj , then the univariate marginal distributions
Gj are max-stable:

Gj(zj ) = GEV(zj ; ⇠j , µj ,�j ) = Pr(Zj  zj ) = G(1, . . . ,1, zj ,1, . . . ,1).

• Additionally, max-stability of G implies a stability property for the dependence
structure.
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Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction
If there exist deterministic normalizing vector sequences an = (an,1, . . . , an,d ) and
bn = (bn,1, . . . , bn,d ) > 0, n 2 N, such that the following convergence holds,

Mn � an
bn

! Z = (Z1, . . . ,Zd ) ⇠ G , n ! 1,

where Z has non-degenerate marginal distributions, then G is a multivariate
extreme-value distribution, that is, a multivariate max-stable distribution.

If all finite-dimensional distributions of a process X = {X (s), s 2 D ⇢ Rk} satisfy the
above convergence, then Z = {Z(s), s 2 D ⇢ Rk} is a max-stable process.

(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of
finite-dimensional distributions. There also exist results for convergence in spaces of
continuous functions over a compact domain D.
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Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the
marginal distributions Fj of Xj and Gj of Zj .

• Often, the unit Fréchet marginal distribution is used:

G?
j (z) = GEV(z; ⇠ = 1, µ = 1,� = 1) = exp

✓
�
1

z

◆
, z > 0.

• We can transform any continuous random variable X ⇠ F towards a variable with
unit Fréchet distribution as follows: X? = � 1

log F (X ) ⇠ G?.

• If Xj ⇠ GEV(⇠, µ,�), then X?
j =

⇣
1 + ⇠ X�µ

�

⌘1/⇠
⇠ G?

j .

• If G is a multivariate max-stable distribution, we write G? for the corresponding
max-stable distribution with unit Fréchet margins. We call G? a simple
max-stable distribution.

We call representations simple if they are based on the marginal ?-scale.
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Simple Maximum Domain of Attraction

We use the following notation: T⇠,µ,�(z) =
⇣
1 + ⇠ z�µ

�

⌘1/⇠
.

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector X ⇠ FX . The following two statements are equivalent:

1 The distribution FX is in the MDA of a multivariate max-stable distribution G .

2 The following two properties hold jointly:
1 Marginal convergence: Each component Xj is in the univariate MDA of a

GEV(⇠j , µj ,�j ) distribution.
2 Convergence on the standardized scale: The distribution of the marginally

standardized random vector

X? = (X?
1 , . . . ,X?

d ) ⇠ FX?

satisfies
Fn

X? (n z) ! G?(z), n ! 1,

i.e., FX? is in the MDA of G?, where

G(z1, . . . , zd ) = G?(T⇠1,µ1,�1 (z1), . . . ,T⇠d ,µd ,�d
(zd )).

With standardized marginal distributions, we can choose normalizing vector sequences
a?
n = (0, . . . , 0) and b?

n = (n, . . . , n).
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Some remarks about max-stable dependence

• There is no exhaustive representation of all simple max-stable distributions G?

using a finite number of parameters.

• We can write G? using the exponent function V ?,

G?(z) = exp(�V ?(z)), z > 0,

where t ⇥ V ?(tz) = V ?(z) ((�1)-homogeneity).

• We say that two variables X1 and X2 are asymptotically independent if

G(z1, z2) = G1(z1)⇥ G2(z2),

and in this case

G?(z1, z2) = exp(�(1/z1 + 1/z2)) = exp(�1/z1)⇥ exp(�1/z2), z1, z2 > 0.
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Example: multivariate logistic distribution

A large variety of parametric multivariate max-stable distribution has been proposed.

The multivariate logistic model was introduced by Emil J. Gumbel in 1960 and can
be defined through its exponent function

V ?(z) =
⇣
z�1/↵
1 + . . .+ z�1/↵

d

⌘↵
, z > 0,

such that

G?(z1, . . . , zd ) = exp
⇣
�
⇣
z�1/↵
1 + . . .+ z�1/↵

d

⌘↵⌘
, z > 0

with parameter 0 < ↵  1 and

• perfect dependence for ↵ ! 0;

• independence for ↵ = 1.
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Example: Simulations of bivariate logistic distribution

Sample size n = 500

Bivariate scatterplots show logZ? (standard Gumbel margins) with Z? ⇠ G?

↵ = 0.1 ↵ = 0.5 ↵ = 0.9
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Example: Huesler–Reiss distribution

Huesler–Reiss distributions are related to multivariate Gaussian distributions.
Consider a multivariate Gaussian vector Ỹ .

Bivariate case: the simple max-stable distribution has parameter
�12 = Var(Ỹ2 � Ỹ1) > 0 and for z1, z2 > 0,

G?(z1, z2) = exp

✓
�

1

z1
�

✓p
�12

2
+

1
p
�12

log
z2
z1

◆
�

1

z2
�

✓p
�12

2
+

1
p
�12

log
z1
z2

◆◆

(with standard Gaussian cdf �)
) independence for �12 ! 1, perfect dependence for �12 ! 0

The general multivariate distribution G? is parametrized by d(d � 1)/2 variogram
values �j1,j2 = Var(Ỹj2 � Ỹj1 ) for 1  j1 < j2  d .
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Example: Simulations of the Huesler–Reiss distribution

Sample size n = 500
Relatively weak dependence

logZ? (Gumbel margins) Z? (Fréchet margins)
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Example, cont’d

Sample size n = 500
Relatively strong dependence

logZ? (Gumbel margins) Z? (Fréchet margins)
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1 Introduction

2 Univariate Extreme-Value Theory
Maxima
Threshold exceedances
Point processes

3 Representations of dependent extremes using maxima and point processes
Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France

5 Perspectives
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Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies X1,X2, . . . of a random vector X = (X1, . . . ,Xd ) ⇠ F , the following
two statements are equivalent:

1 The distribution F is in the multivariate MDA of the max-stable distribution G
for the normalizing sequences an 2 Rd and bn > 0.

2 For the normalizing sequences an 2 Rd and bn > 0, we have the following
point-process convergence with a locally finite Poisson point process limit:

⇢
Xi � an

bn
, i = 1, . . . , n

�
! {Pi , i 2 N} ⇠ PPP(⇤), n ! 1,

with intensity measure ⇤.

If 1) and 2) hold, then G(z) = exp(�V (z)) with

V (z) = ⇤
⇣
(�1, z]C

⌘
,

where the exponent measure ⇤ is defined on A⇤ =
⇣
A⇠1,µ1,�1 ⇥ . . .⇥ A⇠d ,µd ,�d

⌘
\u?,

with the marginal GEV parameters ⇠j , µj ,�j , j = 1, . . . , d , where the lower endpoint

u? =
�
inf A⇠1,µ1,�1 , . . . , inf A⇠d ,µd ,�d

�

is excluded.
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Simple representation with standardized margins
Specifically, the convergence of componentwise maxima and of point patterns is
equivalent on the simple scale using standardized marginal distributions in X?.

Recall: Standardized marginal scale

• X?
j = �1/ log Fj (Xj ) (or any other probability integral transform ensuring X?

j � 0

and x ⇥ Pr(X?
j > x) ! 1 as x ! 1)

• Normalizing sequences on standardized scale are an = 0 and bn = (n, . . . , n)

• GEV margins of G? are unit Fréchet G?
j (zj ) = exp(�1/zj ), zj > 0 (⇠j = 1,

µj = 1, �j = 1).

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set B ⇢ A⇤, the simple exponent measure ⇤? satisfies

⇤(B) = ⇤?(B⇠,µ,�)

where B⇠,µ,� =
��

T⇠1,µ1,�1 (x1), . . . ,T⇠d ,µd ,�d
(xd )

�
| (x1, . . . , xd ) 2 B

 
. The simple

measure ⇤? is defined on A⇤? = [0,1)d \ 0 and is (�1)-homogeneous, that is, for
any Borel set B ⇢ A⇤? , we have

t ⇥ ⇤?(tB) = ⇤?(B), t > 0.
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Bivariate illustration of asymptotic stability
(D = {1, 2})

Simple scale Standard exponential scale
(⇠ = (1, 1),µ = (1, 1),� = (1, 1)) (⇠ = (0, 0),µ = (0, 0),� = (1, 1))

↵n = (n, n), �n = (0, 0) ↵n = (1, 1), �n = (log n, log n)
n ⇥ ⇤?(nB) = ⇤?(B) n ⇥ ⇤(log(n) + B) = ⇤(B)
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The trinity: three classical multivariate formulations
• The trinity of the three classical limit also holds in the multivariate setting.

• For threshold exceedances, a standard approach is to condition on an exceedance
in at least one of the d components.

• To avoid technical notation, we focus on the simple setting.

Theorem
The following three convergences are equivalent:

• Point-process convergence:

⇢X?
i

n
, i = 1, . . . , n

�
! {P?

i , i 2 N} ⇠ PPP(⇤?), n ! 1.

• Convergence of componentwise maxima:

M?
n

n
! Z? ⇠ G?, n ! 1,

with G?(z) = exp(�V ?(z)) where V ?(z) = ⇤?
�
[0, z]C

�
.

• Peaks-Over-Threshold convergence:

X?

u
|
✓

d
max
j=1

X?
j > u

◆
! Y ? ⇠

⇤?( · \ [0, 1]C )

⇤?
�
[0, 1]C

� , u ! 1.
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Remarks about the functional setting

• The trinity of limits also holds in the functional setting
(e.g., Dombry & Ribatet, 2016).

• Usually one considers X 2 C(D) with compact domain D.

• One has to appropriately define weak convergence in a Banach function space.
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The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process {P?
i , i 2 N} with simple ((�1)-homogeneous) intensity

measure ⇤? can be constructed as follows:

{P?
i (s), i 2 N} = {RiWi (s), i 2 N}

where Ri = 1/Ui and

• 0 < U1 < U2 < .... are the points of a unit-rate Poisson process on [0,1), and

• Wi = {Wi (s)} are iid nonnegative random functions, independent of {Ui}, with
EWi (s) = 1 and EWi (s)1+" < 1 for some " > 0.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process Z? can be constructed as

Z?(s) = max
i2N

RiWi (s),

and any such construction is a simple max-stable process.
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Illustration: simple max-stable construction
• In gray, “points” P?

i of the Poisson process on D = [0, 5]
• Max-stable process is the componentwise maximum (in black)
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Simulation based on the spectral representation
If it is simple to simulate from the distribution FW of the spectral process W , we can
draw samples from the simple max-stable process Z?.

Exact simulation
If P(Wj  w0) = 1 for some threshold value 0 < w0 < 1, j = 1, . . . , d , then we can
perform exact simulation of Z? (even if Z?

j = maxi2N RiWij is defined as a maximum

over an infinite number of components):

1 set m = 1

2 generate Em ⇠ Exp(1)

3 generate Wm = (Wm1, . . . ,Wmd )T ⇠ FW

4 set Z? = (Z?
1 , . . . ,Z

?
d )

T with Z?
j = maxi=1,...,m

WijPi
k=1 Ek

for j = 1, . . . , d

5 IF w0Pm
k=1 Ek

 minj=1,...,d Z?
j RETURN Z?

ELSE set m = m + 1 and GO TO 2

Remarks:

• If the distribution of Wj is not finitely bounded, we can fix w0 such that
P(Wj > y0) becomes very small and perform approximation simulation.

• Even with unbounded Wj , exact simulation remains possible for many models
using di↵erent algorithms (see the review of Oesting, Strokorb, 2022).
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Example: Log-Gaussian spectral processes

A possible construction uses a centered Gaussian process W̃ (s) with variance
function �2(s) and sets

W (s) = exp(W̃ (s)� �2(s)/2)

) A class of popular max-stable models:

• Multivariate: Huesler–Reiss distributions

• Spatial: Brown–Resnick processes

Remark: The distribution of the simple max-stable process Z? = {Z?(s), s 2 D}
depends only on the variogram

�(s1, s2) = Var(W̃ (s2)� W̃ (s1)), s1, s2 2 D.
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Illustration: Simulation of Brown–Resnick processes

Two realisation of a spatial Brown-Resnick process
(obtained using the rmaxstab function of the SpatialExtremes package)
Simulation on a grid 20⇥ 20 (such that d = 400) in the square [0, 10]2.

lllustration: process log(Z?(s)) (with standard Gumbel margins)
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