(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes
(4) Representations of dependent extremes using threshold exceedances

Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Practical motivation for dependent extremes

Often, several variables are stochastically dependent, for example in environmental and climatic data.

Examples:

- Different physical variables observed at the same location, such as minimum temperature, maximum temperature, precipitation, wind speed.
- The same physical variable observed at different locations, such as precipitation at different locations of a river catchment.

Many interesting aspects of dependent extremes:

- Aggregation of extreme observations in several components (example: cumulated precipitation \Rightarrow flood risk)
- Spatial extent and temporal duration of environmental extreme events
- Reliability: simultaneous failure of several critical components

Illustration: a bivariate sample with dependence Scatterplot of an iid bivariate sample $\boldsymbol{X}_{i}=\left(X_{i, 1}, X_{i, 2}\right), i=1,2, \ldots, n$.

A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are structurally quite similar.

For indexing the variables of interest,

- we can either put focus on the multivariate aspect and use indices $1, \ldots, d$ for the d components of a random vector

$$
\left(X_{1}, \ldots, X_{d}\right)
$$

(and we can write $D=\{1, \ldots, d\}$ for the domain),

- or we put focus on the process aspect (for example, when working with a random field on a nonempty domain $D \subset \mathbb{R}^{k}$) and use notation such as

$$
\{X(s), s \in D\}
$$

for the whole process, or

$$
\left(X\left(s_{1}\right), \ldots, X\left(s_{d}\right)\right)
$$

for the multivariate vector of variables observed at d locations $s_{1}, \ldots, s_{d} \subset \mathbb{R}^{k}$.

When the distinction is important, we point it out explicitly (for example, for "functional convergence" in a space of functions with continuous sample paths defined over a compact domain D).
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Componentwise maxima of random vectors

Consider a sequence of iid random vectors

$$
\boldsymbol{X}_{i}=\left(X_{i, 1}, \ldots, X_{i, d}\right) \stackrel{d}{=} \boldsymbol{X} \sim F_{\boldsymbol{X}}
$$

where $F_{\boldsymbol{X}}$ is the joint distribution of the components of \boldsymbol{X} :

$$
F_{\boldsymbol{X}}(\boldsymbol{x})=F_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{d}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{d} \leq x_{d}\right)
$$

The componentwise maximum

$$
\boldsymbol{M}_{n}=\left(M_{n, 1}, \ldots, M_{n, d}\right)=\left(\max _{i=1}^{n} X_{i, 1}, \ldots, \max _{i=1}^{n} X_{i, d}\right)
$$

has distribution $F_{\boldsymbol{X}}^{n}$, that is, for $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$,

$$
F_{\boldsymbol{X}}^{n}(\boldsymbol{x})=\left(F_{\boldsymbol{X}}(\boldsymbol{x})\right)^{n}=\operatorname{Pr}\left(X_{i, 1} \leq x_{1}, \ldots, X_{i, d} \leq x_{d}, i=1, \ldots, n\right)
$$

The componentwise maximum \boldsymbol{M}_{n} can be composed of values $X_{i, j}$ with different indices i.

Illustration: bivariate componentwise block maxima A bivariate series $\boldsymbol{X}_{i}=\left(X_{i, 1}, X_{i, 2}\right)$ (with strong cross-correlation) and its componentwise maxima within the blocks separated by red lines. Most but not all of the maxima occur at the same time in the two series.

Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (d-dimensional) distribution G is called max-stable if there exist deterministic vector sequences $\boldsymbol{\alpha}_{n}=\left(\alpha_{n, 1}, \ldots, \alpha_{n, d}\right)$ and $\boldsymbol{\beta}_{n}=\left(\beta_{n, 1}, \ldots, \beta_{n, d}\right)>\mathbf{0}$, $n \in \mathbb{N}$, such that

$$
G^{n}\left(\boldsymbol{\alpha}_{n}+\boldsymbol{\beta}_{n} z\right)=G(z), \quad z \in \mathbb{R}^{d} .
$$

If all finite-dimensional distributions of a stochastic process $\boldsymbol{Z}=\left\{Z(s), s \in D \subset \mathbb{R}^{k}\right\}$ are max-stable, we call \boldsymbol{Z} a max-stable process.

Equivalently, if $\boldsymbol{X}_{1} \sim G$, then the componentwise maximum over n iid copies of \boldsymbol{X}_{1} satisfies

$$
\frac{\boldsymbol{M}_{n}-\boldsymbol{\alpha}_{n}}{\boldsymbol{\beta}_{n}} \quad \stackrel{d}{=} \quad \boldsymbol{X}_{1}, \quad n \in \mathbb{N}
$$

\triangle Multivariate max-stability is stronger than max-stability of the univariate marginal distributions.

- If $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{d}\right) \sim G$ with $Z_{j} \sim G_{j}$, then the univariate marginal distributions G_{j} are max-stable:

$$
\operatorname{Gj}\left(z_{j}\right)=\operatorname{GEV}\left(z_{j} ; \xi_{j}, \mu_{j}, \sigma_{j}\right)=\operatorname{Pr}\left(z_{j} \leq z_{j}\right)=G\left(\infty, \ldots, \infty, z_{j}, \infty, \ldots, \infty\right)
$$

- Additionally, max-stability of G implies a stability property for the dependence structure.

Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction

If there exist deterministic normalizing vector sequences $\boldsymbol{a}_{n}=\left(a_{n, 1}, \ldots, a_{n, d}\right)$ and $\boldsymbol{b}_{n}=\left(b_{n, 1}, \ldots, b_{n, d}\right)>0, n \in \mathbb{N}$, such that the following convergence holds,

$$
\frac{\boldsymbol{M}_{n}-\boldsymbol{a}_{n}}{\boldsymbol{b}_{n}} \rightarrow \boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{d}\right) \sim G, \quad n \rightarrow \infty
$$

where \boldsymbol{Z} has non-degenerate marginal distributions, then G is a multivariate extreme-value distribution, that is, a multivariate max-stable distribution.

If all finite-dimensional distributions of a process $X=\left\{X(s)\right.$, $\left.s \in D \subset \mathbb{R}^{k}\right\}$ satisfy the above convergence, then $Z=\left\{Z(s), s \in D \subset \mathbb{R}^{k}\right\}$ is a max-stable process.
(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of finite-dimensional distributions. There also exist results for convergence in spaces of continuous functions over a compact domain D.

Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the marginal distributions F_{j} of X_{j} and G_{j} of Z_{j}.

- Often, the unit Fréchet marginal distribution is used:

$$
G_{j}^{\star}(z)=\operatorname{GEV}(z ; \xi=1, \mu=1, \sigma=1)=\exp \left(-\frac{1}{z}\right), \quad z>0
$$

- We can transform any continuous random variable $X \sim F$ towards a variable with unit Fréchet distribution as follows: $X^{\star}=-\frac{1}{\log F(X)} \sim G^{\star}$.
- If $X_{j} \sim \operatorname{GEV}(\xi, \mu, \sigma)$, then $X_{j}^{\star}=\left(1+\xi \frac{X-\mu}{\sigma}\right)^{1 / \xi} \sim G_{j}^{\star}$.
- If G is a multivariate max-stable distribution, we write G^{\star} for the corresponding max-stable distribution with unit Fréchet margins. We call G^{\star} a simple max-stable distribution.

We call representations simple if they are based on the marginal \star-scale.

Simple Maximum Domain of Attraction

We use the following notation: $T_{\xi, \mu, \sigma}(z)=\left(1+\xi \frac{z-\mu}{\sigma}\right)^{1 / \xi}$.

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector $\boldsymbol{X} \sim F_{\boldsymbol{X}}$. The following two statements are equivalent:
(1) The distribution F_{X} is in the MDA of a multivariate max-stable distribution G.
(2) The following two properties hold jointly:
(1) Marginal convergence: Each component X_{j} is in the univariate MDA of a $\operatorname{GEV}\left(\xi_{j}, \mu_{j}, \sigma_{j}\right)$ distribution.
(2) Convergence on the standardized scale: The distribution of the marginally standardized random vector

$$
\boldsymbol{X}^{\star}=\left(X_{1}^{\star}, \ldots, X_{d}^{\star}\right) \sim F_{\boldsymbol{X}^{\star}}
$$

satisfies

$$
F_{X^{\star}}^{n}(n z) \rightarrow G^{\star}(z), \quad n \rightarrow \infty,
$$

i.e., $F_{X^{\star}}$ is in the MDA of G^{\star}, where

$$
G\left(z_{1}, \ldots, z_{d}\right)=G^{\star}\left(T_{\xi_{1}, \mu_{1}, \sigma_{1}}\left(z_{1}\right), \ldots, T_{\xi_{d}, \mu_{d}, \sigma_{d}}\left(z_{d}\right)\right) .
$$

With standardized marginal distributions, we can choose normalizing vector sequences $\boldsymbol{a}_{n}^{\star}=(0, \ldots, 0)$ and $\boldsymbol{b}_{n}^{\star}=(n, \ldots, n)$.

Some remarks about max-stable dependence

- There is no exhaustive representation of all simple max-stable distributions G^{\star} using a finite number of parameters.
- We can write G^{\star} using the exponent function V^{\star},

$$
G^{\star}(z)=\exp \left(-V^{\star}(z)\right), \quad z>\mathbf{0}
$$

where $t \times V^{\star}(t z)=V^{\star}(z)((-1)$-homogeneity $)$.

- We say that two variables X_{1} and X_{2} are asymptotically independent if

$$
G\left(z_{1}, z_{2}\right)=G_{1}\left(z_{1}\right) \times G_{2}\left(z_{2}\right)
$$

and in this case

$$
G^{\star}\left(z_{1}, z_{2}\right)=\exp \left(-\left(1 / z_{1}+1 / z_{2}\right)\right)=\exp \left(-1 / z_{1}\right) \times \exp \left(-1 / z_{2}\right), \quad z_{1}, z_{2}>0
$$

Example: multivariate logistic distribution

A large variety of parametric multivariate max-stable distribution has been proposed.

The multivariate logistic model was introduced by Emil J. Gumbel in 1960 and can be defined through its exponent function

$$
V^{\star}(z)=\left(z_{1}^{-1 / \alpha}+\ldots+z_{d}^{-1 / \alpha}\right)^{\alpha}, \quad z>0
$$

such that

$$
G^{\star}\left(z_{1}, \ldots, z_{d}\right)=\exp \left(-\left(z_{1}^{-1 / \alpha}+\ldots+z_{d}^{-1 / \alpha}\right)^{\alpha}\right), \quad \boldsymbol{z}>0
$$

with parameter $0<\alpha \leq 1$ and

- perfect dependence for $\alpha \rightarrow 0$;
- independence for $\alpha=1$.

Example: Simulations of bivariate logistic distribution

Sample size $n=500$

Bivariate scatterplots show $\log Z^{\star}$ (standard Gumbel margins) with $Z^{\star} \sim G^{\star}$

$$
\alpha=0.1
$$

$$
\alpha=0.5
$$

$\alpha=0.5$
$\alpha=0.9$

Example: Huesler-Reiss distribution

Huesler-Reiss distributions are related to multivariate Gaussian distributions.
Consider a multivariate Gaussian vector $\tilde{\boldsymbol{Y}}$.

Bivariate case: the simple max-stable distribution has parameter $\gamma_{12}=\operatorname{Var}\left(\tilde{Y}_{2}-\tilde{Y}_{1}\right)>0$ and for $z_{1}, z_{2}>0$,

$$
G^{\star}\left(z_{1}, z_{2}\right)=\exp \left(-\frac{1}{z_{1}} \Phi\left(\frac{\sqrt{\gamma_{12}}}{2}+\frac{1}{\sqrt{\gamma_{12}}} \log \frac{z_{2}}{z_{1}}\right)-\frac{1}{z_{2}} \Phi\left(\frac{\sqrt{\gamma_{12}}}{2}+\frac{1}{\sqrt{\gamma_{12}}} \log \frac{z_{1}}{z_{2}}\right)\right)
$$

(with standard Gaussian cdf Φ)
\Rightarrow independence for $\gamma_{12} \rightarrow \infty$, perfect dependence for $\gamma_{12} \rightarrow 0$

The general multivariate distribution G^{\star} is parametrized by $d(d-1) / 2$ variogram values $\gamma_{j_{1}, j_{2}}=\operatorname{Var}\left(\tilde{Y}_{j_{2}}-\tilde{Y}_{j_{1}}\right)$ for $1 \leq j_{1}<j_{2} \leq d$.

Example: Simulations of the Huesler-Reiss distribution

Sample size $n=500$
Relatively weak dependence

$$
\log Z^{\star} \text { (Gumbel margins) }
$$

\boldsymbol{Z}^{\star} (Fréchet margins)

Example, cont'd

Sample size $n=500$
Relatively strong dependence
$\log Z^{\star}$ (Gumbel margins)

\boldsymbol{Z}^{\star} (Fréchet margins)

(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima

Point processes

Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$ of a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right) \sim F$, the following two statements are equivalent:
(1) The distribution F is in the multivariate MDA of the max-stable distribution G for the normalizing sequences $\boldsymbol{a}_{n} \in \mathbb{R}^{d}$ and $\boldsymbol{b}_{n}>\mathbf{0}$.
(2) For the normalizing sequences $\boldsymbol{a}_{n} \in \mathbb{R}^{d}$ and $\boldsymbol{b}_{n}>\boldsymbol{0}$, we have the following point-process convergence with a locally finite Poisson point process limit:

$$
\left\{\frac{\boldsymbol{X}_{i}-\boldsymbol{a}_{n}}{\boldsymbol{b}_{n}}, i=1, \ldots, n\right\} \rightarrow\left\{\boldsymbol{P}_{i}, i \in \mathbb{N}\right\} \sim \operatorname{PPP}(\Lambda), \quad n \rightarrow \infty
$$

with intensity measure Λ.
If 1) and 2) hold, then $G(z)=\exp (-V(z))$ with

$$
V(z)=\Lambda\left((-\infty, z]^{c}\right)
$$

where the exponent measure Λ is defined on $A_{\Lambda}=\left(\bar{A}_{\xi_{1}, \mu_{1}, \sigma_{1}} \times \ldots \times \bar{A}_{\xi_{d}, \mu_{d}, \sigma_{d}}\right) \backslash \boldsymbol{u}_{\star}$, with the marginal GEV parameters $\xi_{j}, \mu_{j}, \sigma_{j}, j=1, \ldots, d$, where the lower endpoint

$$
\boldsymbol{u}_{\star}=\left(\inf A_{\xi_{1}, \mu_{1}, \sigma_{1}}, \ldots, \inf A_{\xi_{d}, \mu_{d}, \sigma_{d}}\right)
$$

is excluded.

Simple representation with standardized margins
Specifically, the convergence of componentwise maxima and of point patterns is equivalent on the simple scale using standardized marginal distributions in \boldsymbol{X}^{\star}.

Recall: Standardized marginal scale

- $X_{j}^{\star}=-1 / \log F_{j}\left(X_{j}\right)$ (or any other probability integral transform ensuring $X_{j}^{\star} \geq 0$ and $x \times \operatorname{Pr}\left(X_{j}^{\star}>x\right) \rightarrow 1$ as $\left.x \rightarrow \infty\right)$
- Normalizing sequences on standardized scale are $\boldsymbol{a}_{n}=\mathbf{0}$ and $\boldsymbol{b}_{n}=(n, \ldots, n)$
- GEV margins of G^{\star} are unit Fréchet $G_{j}^{\star}\left(z_{j}\right)=\exp \left(-1 / z_{j}\right), z_{j}>0\left(\xi_{j}=1\right.$, $\mu_{j}=1, \sigma_{j}=1$).

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set $B \subset A_{\Lambda}$, the simple exponent measure Λ^{\star} satisfies

$$
\Lambda(B)=\Lambda^{\star}\left(B_{\xi, \mu, \sigma}\right)
$$

where $B_{\boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\sigma}}=\left\{\left(T_{\xi_{1}, \mu_{1}, \sigma_{1}}\left(x_{1}\right), \ldots, T_{\xi_{d}, \mu_{d}, \sigma_{d}}\left(x_{d}\right)\right) \mid\left(x_{1}, \ldots, x_{d}\right) \in B\right\}$. The simple measure Λ^{\star} is defined on $A_{\Lambda^{\star}}=[0, \infty)^{d} \backslash \mathbf{0}$ and is (-1)-homogeneous, that is, for any Borel set $B \subset A_{\Lambda^{\star}}$, we have

$$
t \times \Lambda^{\star}(t B)=\Lambda^{\star}(B), \quad t>0
$$

Bivariate illustration of asymptotic stability

$$
(D=\{1,2\})
$$

Simple scale

$$
(\xi=(1,1), \boldsymbol{\mu}=(1,1), \boldsymbol{\sigma}=(1,1))
$$

$$
\boldsymbol{\alpha}_{n}=(n, n), \boldsymbol{\beta}_{n}=(0,0)
$$

$$
n \times \Lambda^{\star}(n B)=\Lambda^{\star}(B)
$$

Standard exponential scale
$(\boldsymbol{\xi}=(0,0), \boldsymbol{\mu}=(0,0), \boldsymbol{\sigma}=(1,1))$
$\boldsymbol{\alpha}_{n}=(1,1), \boldsymbol{\beta}_{n}=(\log n, \log n)$
$n \times \Lambda(\log (n)+B)=\Lambda(B)$

The trinity: three classical multivariate formulations

- The trinity of the three classical limit also holds in the multivariate setting.
- For threshold exceedances, a standard approach is to condition on an exceedance in at least one of the d components.
- To avoid technical notation, we focus on the simple setting.

Theorem

The following three convergences are equivalent:

- Point-process convergence:

$$
\left\{\frac{\boldsymbol{X}_{i}^{\star}}{n}, i=1, \ldots, n\right\} \rightarrow\left\{\boldsymbol{P}_{i}^{\star}, i \in \mathbb{N}\right\} \sim \operatorname{PPP}\left(\wedge^{\star}\right), \quad n \rightarrow \infty
$$

- Convergence of componentwise maxima:

$$
\frac{M_{n}^{\star}}{n} \rightarrow Z^{\star} \sim G^{\star}, \quad n \rightarrow \infty
$$

with $G^{\star}(z)=\exp \left(-V^{\star}(z)\right)$ where $V^{\star}(z)=\Lambda^{\star}\left([\mathbf{0}, \boldsymbol{z}]^{C}\right)$.

- Peaks-Over-Threshold convergence:

$$
\frac{\boldsymbol{X}^{\star}}{u} \left\lvert\,\left(\max _{j=1}^{d} X_{j}^{\star}>u\right) \rightarrow \boldsymbol{Y}^{\star} \sim \frac{\Lambda^{\star}\left(\cdot \cap[\mathbf{0}, \mathbf{1}]^{C}\right)}{\Lambda^{\star}\left([\mathbf{0}, \mathbf{1}]^{C}\right)}\right., \quad u \rightarrow \infty
$$

Remarks about the functional setting

- The trinity of limits also holds in the functional setting (e.g., Dombry \& Ribatet, 2016).
- Usually one considers $\boldsymbol{X} \in \mathcal{C}(D)$ with compact domain D.
- One has to appropriately define weak convergence in a Banach function space.
(1) Introduction
(2) Univariate Extreme-Value Theory

Maxima
Threshold exceedances
Point processes
(3) Representations of dependent extremes using maxima and point processes

Introduction to dependent extremes
Componentwise maxima
Point processes
Spectral construction of max-stable processes

4 Representations of dependent extremes using threshold exceedances
Extremal dependence summaries based on threshold exceedances
Multivariate and functional threshold exceedances
Application example: spatial temperature extremes in France
(5) Perspectives

The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process $\left\{\boldsymbol{P}_{i}^{\star}, i \in \mathbb{N}\right\}$ with simple ((-1)-homogeneous) intensity measure $\boldsymbol{\Lambda}^{\star}$ can be constructed as follows:

$$
\left\{P_{i}^{\star}(s), \quad i \in \mathbb{N}\right\}=\left\{R_{i} W_{i}(s), \quad i \in \mathbb{N}\right\}
$$

where $R_{i}=1 / U_{i}$ and

- $0<U_{1}<U_{2}<\ldots$. are the points of a unit-rate Poisson process on $[0, \infty)$, and
- $\boldsymbol{W}_{i}=\left\{W_{i}(s)\right\}$ are iid nonnegative random functions, independent of $\left\{U_{i}\right\}$, with $\mathbb{E} W_{i}(s)=1$ and $\mathbb{E} W_{i}(s)^{1+\varepsilon}<\infty$ for some $\varepsilon>0$.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process \boldsymbol{Z}^{\star} can be constructed as

$$
Z^{\star}(s)=\max _{i \in \mathbb{N}} R_{i} W_{i}(s)
$$

and any such construction is a simple max-stable process.

Illustration: simple max-stable construction

- In gray, "points" $\boldsymbol{P}_{i}^{\star}$ of the Poisson process on $D=[0,5]$
- Max-stable process is the componentwise maximum (in black)

Simulation based on the spectral representation

If it is simple to simulate from the distribution F_{W} of the spectral process \boldsymbol{W}, we can draw samples from the simple max-stable process Z^{\star}.

Exact simulation

If $P\left(W_{j} \leq w_{0}\right)=1$ for some threshold value $0<w_{0}<\infty, j=1, \ldots, d$, then we can perform exact simulation of Z^{\star} (even if $Z_{j}^{\star}=\max _{i \in \mathbb{N}} R_{i} W_{i j}$ is defined as a maximum over an infinite number of components):
(1) set $m=1$
(2) generate $E_{m} \sim \operatorname{Exp}(1)$
(3) generate $\boldsymbol{W}_{m}=\left(W_{m 1}, \ldots, W_{m d}\right)^{T} \sim F_{W}$
(4) set $Z^{\star}=\left(Z_{1}^{\star}, \ldots, Z_{d}^{\star}\right)^{T}$ with $Z_{j}^{\star}=\max _{i=1, \ldots, m} \frac{W_{i j}}{\sum_{k=1}^{i} E_{k}}$ for $j=1, \ldots, d$
(5) IF $\frac{w_{0}}{\sum_{k=1}^{m} E_{k}} \leq \min _{j=1, \ldots, d} Z_{j}^{\star} \quad$ RETURN Z^{\star}

ELSE \quad set $m=m+1$ and GO TO 2

Remarks:

- If the distribution of W_{j} is not finitely bounded, we can fix w_{0} such that $P\left(W_{j}>y_{0}\right)$ becomes very small and perform approximation simulation.
- Even with unbounded W_{j}, exact simulation remains possible for many models using different algorithms (see the review of Oesting, Strokorb, 2022).

Example: Log-Gaussian spectral processes

A possible construction uses a centered Gaussian process $\tilde{W}(s)$ with variance function $\sigma^{2}(s)$ and sets

$$
W(s)=\exp \left(\tilde{W}(s)-\sigma^{2}(s) / 2\right)
$$

\Rightarrow A class of popular max-stable models:

- Multivariate: Huesler-Reiss distributions
- Spatial: Brown-Resnick processes

Remark: The distribution of the simple max-stable process $Z^{\star}=\left\{Z^{\star}(s), s \in D\right\}$ depends only on the variogram

$$
\gamma\left(s_{1}, s_{2}\right)=\operatorname{Var}\left(\tilde{W}\left(s_{2}\right)-\tilde{W}\left(s_{1}\right)\right), \quad s_{1}, s_{2} \in D .
$$

Illustration: Simulation of Brown-Resnick processes

Two realisation of a spatial Brown-Resnick process (obtained using the rmaxstab function of the SpatialExtremes package) Simulation on a grid 20×20 (such that $d=400$) in the square $[0,10]^{2}$.

Illustration: process $\log \left(Z^{\star}(s)\right)$ (with standard Gumbel margins)

