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Practical motivation for dependent extremes

Often, several variables are stochastically dependent,
for example in environmental and climatic data.

Examples:

e Different physical variables observed at the same location, such as minimum
temperature, maximum temperature, precipitation, wind speed.

e The same physical variable observed at different locations, such as precipitation
at different locations of a river catchment.

Many interesting aspects of dependent extremes:

o of extreme observations in several components
(example: cumulated precipitation = flood risk)

° and of environmental extreme events

o simultaneous failure of several critical components



lllustration: a bivariate sample with dependence

Scatterplot of an iid bivariate sample X; = (X; 1, Xi2), i =1,2,...,n.
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A note on notations (multivariate / process)

Representations for extremes of random vectors and stochastic processes are
structurally quite similar.
For indexing the variables of interest,

e we can either put focus on the multivariate aspect and use indices 1,...,d for

the d components of a random vector

(X1, ..., Xq)

(and we can write D = {1,...,d} for the domain),

e or we put focus on the process aspect (for example, when working with a random
field on a nonempty domain D C R¥) and use notation such as

{X(s), se D}
for the whole process, or
(X(s1),...,X(sq))

for the multivariate vector of variables observed at d locations si,...,s; C RX.

When the distinction is important, we point it out explicitly (for example, for
“functional convergence” in a space of functions with continuous sample paths defined

over a compact domain D).
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Componentwise maxima of random vectors

Consider a sequence of iid random vectors

d
Xi=(Xi1,...,Xiq) = X ~ Fx,
where Fx is the joint distribution of the components of X:

Fx(x) = Fx(x1,...,xq) = Pr(X1 < x1,...,Xg < xq)

The

n n
M, = (Mn,17 SR Mn,d) — <malxxi,17 SR malxxi,d>

has distribution Fg, that is, for x = (x1,...,xqg),

F)’}(X) = (Fx(X))n = PI‘(X,"l S X1y ,X,')d S Xd s = ]., ceey n)

/\ The componentwise maximum M), can be composed of values X; ; with different
indices 1.
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lllustration: bivariate componentwise block maxima

A bivariate series X; = (Xj 1, Xj2) (with strong cross-correlation) and its
componentwise maxima within the blocks separated by red lines. Most but not all of
the maxima occur at the same time in the two series.
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Max-stable distributions and processes

Definition: max-stable distribution; max-stable process

A multivariate (d-dimensional) distribution G is called if there exist
deterministic vector sequences ap = (an,1,...,%.q) and By = (Bn,1,-.-,Bn,d) > 0,
n € N, such that

G"(an+ Brnz) = G(z), =z¢€ RA.

If all finite-dimensional distributions of a stochastic process Z = {Z(s),s € D C R*}
are max-stable, we call Z a

Equivalently, if X; ~ G, then the componentwise maximum over n iid copies of X;
satisfies

—Mn — %n g Xi neN
Bn ’

/\ Multivariate max-stability is stronger than max-stability of the univariate marginal
distributions.

o If Z=(21,...,2Z4) ~ G with Z; ~ Gj, then the univariate marginal distributions
G; are max-stable:

Gj(ZJ') - GEV(ZJ';SJ',,LLJ',O‘J') = PI‘(ZJ' S Zj) = G(OO, cee, 00, Zj, 00, ..., OO)

e Additionally, max-stability of G implies a stability property for the dependence
structure.
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Multivariate Maximum-Domain-of-Attraction theorem

Theorem: Multivariate Maximum Domain of Attraction

If there exist deterministic normalizing vector sequences a, = (an,1,...,an d) and
b, = (bn1,..., b,,,d) > 0, n € N, such that the following convergence holds,
Mn — a

2 Y 5 Z=(Zi,...,Z49) ~ G, n— oo,
n

where Z has non-degenerate marginal distributions, then G is a
. that is, a

If all finite-dimensional distributions of a process X = {X(s), s € D C R} satisfy the
above convergence, then Z = {Z(s),s € D C R} is a

(see, for instance, Resnick (1987) for the proof)

Remark: For stochastic processes, we here define convergence in terms of
finite-dimensional distributions. There also exist results for convergence in spaces of
continuous functions over a compact domain D.



Formulation using standardized marginal distributions

To focus on the extremal dependence structure, it is useful to standardize the
marginal distributions F; of X; and G; of Z;.

Often, the is used:

1
G (z) =GEV(z; =1, u=1,0 =1) = exp (—;) , z>0.

e We can transform any continuous random variable X ~ F towards a variable with

unit Fréchet distribution as follows: X* = — —L—=~ ~ G*.
og F(X)

1/¢
o If X; ~ GEV(, 1, 0), then X7 = (1 +§X—“) ¢ Gr.

o J

e If G is a multivariate max-stable distribution, we write G* for the corresponding
max-stable distribution with unit Fréchet margins. We call G* a

We call representations if they are based on the marginal x-scale.
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Simple Maximum Domain of Attraction

1/¢
We use the following notation: T¢ , ,(z) = (1 + 5%) :

Maximum Domain of Attraction using standardized marginal distributions

Consider a random vector X ~ Fx. The following two statements are equivalent:
® The distribution Fx is in the MDA of a multivariate max-stable distribution G.

® The following two properties hold jointly:
® Marginal convergence: Each component X; is in the univariate MDA of a

GEV (&), pj, o)) distribution.
® Convergence on the standardized scale: The distribution of the marginally

standardized random vector

X* = (X, ..., X)) ~ Fxs

satisfies
F;* (nz) - G*(z), n— oo,

i.e., Fxx is in the MDA of G*, where
G(217 oo c 7Zd) — G*(Tﬁl,,u]_,d]_ (21)7 coog Tﬁd,,ud,dd(zd))'

With standardized marginal distributions, we can choose normalizing vector sequences
a; =(0,...,0) and by = (n,...,n).



Some remarks about max-stable dependence

e There is no exhaustive representation of all simple max-stable distributions G*
using a finite number of parameters.

e We can write G* using the :
G*(2) = exp(~V*(2)), z>0,

where t X V*(tz) = V*(2) ( ).

e We say that two variables X; and X5 are if

G(Z]_,Z2) = Gl(Zl) X GQ(ZQ),

and in this case

G*(z1,22) = exp(—(1/z1 + 1/20)) = exp(—1/z1) X exp(—1/z), =z1,z0 > 0.
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Example: multivariate logistic distribution

A large variety of parametric multivariate max-stable distribution has been proposed.

The was introduced by Emil J. Gumbel in 1960 and can
be defined through its exponent function

V*(z) = (zl—l/“ +...+zd—1/0‘)°‘, z>0,

such that

G*(z1,...,24) = exp (— (zl_l/a—l—...—l—zd_l/a)a), z>0

with parameter 0 < o < 1 and
e perfect dependence for ao — 0;

e independence for a = 1.



Example: Simulations of bivariate logistic distribution

Sample size n = 500

Bivariate scatterplots show log Z* (standard Gumbel margins) with Z* ~ G*
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Example: Huesler—Reiss distribution

are related to multivariate Gaussian distributions.
Consider a multivariate Gaussian vector Y.

Bivariate case: the simple max-stable distribution has parameter
~v12 = Var(Y2 — Y1) > 0 and for z1,z0 > 0,

1 \/ 1 1 \/ 1
G*(z1,20) = exp (——Cb ( 712 + log 2) b ( 12 + log “
71 2 V12 71 2 VY12 Z>

(with standard Gaussian cdf @)
= independence for 712 — 00, perfect dependence for v — 0

The general multivariate distribution G* is parametrized by d(d — 1)/2 variogram
values vj, , = Var(Yj, — Yj,) for 1 < ji; < jo <d.
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Example: Simulations of the Huesler—Reiss distribution

Sample size n = 500
Relatively weak dependence

log Z* (Gumbel margins) Z* (Fréchet margins)
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Sample size n = 500
Relatively strong dependence

log Z* (Gumbel margins)
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Point-process convergence

Theorem (Point-process convergence)

For i.i.d. copies X1, X2, ... of a random vector X = (Xi,...,Xy) ~ F, the following
two statements are equivalent:

® The distribution F is in the multivariate MDA of the max-stable distribution G
for the normalizing sequences a, € RY and b, > 0.

® For the normalizing sequences a, € RY and b, > 0, we have the following
point-process convergence with a locally finite Poisson point process limit:

X; — _ :
{b—a", 1:1,...,n} 5 {P:, i €N} ~PPP(A), n — oo,
n
with intensity measure A.
If 1) and 2) hold, then G(z) = exp(—V/(z)) with

V(2) = A ((=00,2]°),

where the is defined on A\ = (Z£1,u1,01 X ... X ngud,ad) \ Uy,

with the marginal GEV parameters §;, uj, 05, j = 1,...,d, where the lower endpoint
Uy, = (Inf Aglal'bl70'17 Y Inf Agdnu’dao_d)

is excluded.



Simple representation with standardized margins

Specifically, the convergence of componentwise maxima and of point patterns is
equivalent on the simple scale using standardized marginal distributions in X*.

Recall: Standardized marginal scale

e X = —1/log Fj(Xj) (or any other probability integral transform ensuring X* > 0
and x X Pr(X* > x) — 1 as x = o0)

e Normalizing sequences on standardized scale are a, = 0 and b, = (n,...,n)
e GEV margins of G* are unit Fréchet G(z;) = exp(—1/z), z; > 0 (§; = 1,
Hj = 1, o; = 1).

Simple exponent measure and homogeneity (asymptotic stability)

For any Borel set B C Ajp, the satisfies
AN(B) =N (B¢ o)

where Be 1o = {(Te; py,o0(X1), -+ Teyug,00(xd)) | (x1,...,%4) € B} . The simple
measure A* is defined on Apx = [0,00)9 \ 0 and is , that is, for
any Borel set B C Apx, we have

t x N*(tB) = N*(B), t>0.
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(€ — (17 1)7 H = (1’ 1)70- - (17 1))

an = (n,n), B, =(0,0)
nx N*(nB) = N*(B)

Bivariate illustration of asymptotic stability
Simple scale

(D=11,2})

Standard exponential scale

(S — (070)7“ — (070)’0' - (17 1))

an = (1,1), B, = (log n, log n)
n x N(log(n) + B) = A(B)

log(n) + B
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The trinity: three classical multivariate formulations

e The trinity of the three classical limit also holds in the multivariate setting.

e For threshold exceedances, a standard approach is to condition on an exceedance
in at least one of the d components.

e To avoid technical notation, we focus on the

Theorem

The following three convergences are equivalent:

e Point-process convergence:

X*
{ i izl,...,n}—>{P,-*, i € N} ~ PPP(A*), n — oo.

n
e Convergence of componentwise maxima:

M*

n

—Z* ~ G*, n— oo,

with G*(z) = exp(—V*(z)) where V*(z) = A* ([0, z]¢) .

e Peaks-Over-Threshold convergence:

* *( . C
x—\(m%xX-*>u)—>Y*NA( N[0, 1] ), u — oo.
u =1/ A* ([0,1]€¢)




Remarks about the functional setting

e The trinity of limits also holds in the functional setting
(e.g., Dombry & Ribatet, 2016).

e Usually one considers X € C(D) with compact domain D.

e One has to appropriately define weak convergence in a Banach function space.
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The spectral construction of simple processes

Spectral representation of simple point processes

Any Poisson point process { P, i € N} with simple ((—1)-homogeneous) intensity
measure A* can be constructed as follows:

{P/(s), i € N} = {RiW(s), i € N}

where R; = 1/U; and
e 0 < U; < U < .... are the points of a unit-rate Poisson process on [0, c0), and

o W; ={W,(s)} are iid nonnegative random functions, independent of {U;}, with
EW;(s) =1 and EW;(s)!*¢ < oo for some ¢ > 0.

A consequence of this is the spectral representation of simple max-stable processes.

Spectral representation of the simple max-stable processes

With notations as above, any simple max-stable process Z* can be constructed as

Z*(s) = RiWi;(s),
(s) HES (s)

and any such construction is a simple max-stable process.



lllustration: simple max-stable construction

e In gray, “points” P’ of the Poisson process on D = [0, 5]
e Max-stable process is the componentwise maximum (in black)

10
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Simulation based on the spectral representation

If it is simple to simulate from the distribution Fyy of the spectral process W, we can
draw samples from the simple max-stable process Z*.

Exact simulation

If P(W; < wp) = 1 for some threshold value 0 < wp < oo, j =1,...,d, then we can
perform (even if Zj* = max;eN R; W is defined as a maximum

over an infinite number of components):
®setm=1
® generate E, ~ Exp(1)
© generate Wy, = (W1, ..., Whg) " ~ Fuy

0 set Z* = (Z},...,Z3)" with ZF = maxj=1,... :

At ZL:1 Ek
© IF % <minj_1..4Z" RETURN Z*

k=1 —k

ELSE set m= m+ 1 and GO TO?2

forj=1,...,d

Remarks:

e If the distribution of W, is not finitely bounded, we can fix wy such that
P(W, > yo) becomes very small and perform approximation simulation.

e Even with unbounded W;, exact simulation remains possible for many models
using different algorithms (see the review of Oesting, Strokorb, 2022).
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Example: Log-Gaussian spectral processes

A possible construction uses a with variance
function o?(s) and sets

W(s) = exp(W(s) — o%(s)/2)

= A class of popular max-stable models:
e Multivariate:

e Spatial:

Remark: The distribution of the simple max-stable process Z* = {Z*(s), s € D}
depends only on the variogram

’7(51,52) = Var(W(sz) — W(Sl)), s1,s € D.
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lllustration: Simulation of Brown—Resnick processes

Two realisation of a spatial Brown-Resnick process
(obtained using the rmaxstab function of the SpatialExtremes package)
Simulation on a grid 20 x 20 (such that d = 400) in the square [0, 10]?.

lllustration: process log(Z*(s)) (with standard Gumbel margins)
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