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Illustration: Spatial co-occurrence of exceedances

Original spatial field Excursion set above a high threshold
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Assessing co-occurrences of threshold exceedances

Threshold exceedances can occur simultaneously,

• in di↵erent variables,

• at nearby locations,

• at close time steps.

Do co-occurrences happen by chance (independence),
or are they correlated in some way?

A simple and flexible exploratory approach

Idea: Study pairwise conditional co-occurrence probabilities given as

Pr(X2 > u | X1 > u) =
Pr(X1 > u, X2 > u)

Pr(X1 > u)
,

and assess how they change with increasing u and for di↵erent pairs,
for instance with respect to temporal lag or spatial distance.
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Tail correlation coe�cient

Consider a bivariate random vector (X1,X2) with X1 ⇠ F1 and X2 ⇠ F2.

Tail correlation
Consider the conditional probability

�(u) = Pr(F2(X2) > u | F1(X1) > u) =
Pr(F2(X2) > u,F1(X1) > u)

Pr(F1(X1) > u)
, u 2 (0, 1).

We define the following limit (if it exists):

� = lim
u!1

�(u) 2 [0, 1]

The coe�cient � symmetric with respect to X1 and X2 and is known as �-measure or
tail correlation. We say that

• X1 and X2 are asymptotically dependent if � > 0;

• X1 and X2 are asymptotically independent if � = 0.
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Link between tail correlation and max-stability
We have

� = lim
z!1

Pr(X?
2 > z | X?

1 > z) = lim
z!1

Pr(X?
1 > z,X?

2 > z)

Pr(X?
1 > z)

(?)

Assume that (X1,X2) is in the MDA of G . The bivariate max-stable convergence

F(X?
1 ,X?

2 )(nz, nz)
n ! G?(z, z), z > 0,

is equivalent to

1� F(X?
1 ,X?

2 )(nz, nz) ⇡ � logG?(nz, nz), for large n.

By using

Pr(X?
1 > z,X?

2 > z) = (1� FX?
1
(z)) + (1� FX?

2
(z))� (1� F(X?

1 ,X?
2 )(z, z)),

and � logG?(nz, nz) = V?(1,1)
nz and 1� G?

j (nz) ⇡ 1/(nz) in (?), we obtain

� = 2� V ?(1, 1).

Remark: asymptotic independence corresponds to classical independence in the
max-stable limit distribution. We have � = 0 if and only if V ?(1, 1) = 2, and in this
case V ?(z1, z2) = 1/z1 + 1/z2 for z1, z2 > 0, and G?(z1, z2) = G?

1 (z1)⇥ G?
2 (z2).
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Illustration: empirical tail correlation
Data setting: n = 200, u = 0.9.
Blue points: exceedances of empirical distribution function F̂1(X1) above u.
Red points: exceedances of F̂2(X2) above u given that F̂1(X1) is above u.
Empirical tail correlation: �̂(u) = 6

20 = 0.3.
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Tail autocorrelation function (Extremogram)

Consider X (s) ⇠ F with index s 2 Rk .

What is the tail correlation at a given distance h = �s � 0?

For h � 0, we consider the conditional exceedance probability

�(h; u) = Pr(F (X (s + h)) > u | F (X (s)) > u) =
Pr(F (X (s + h)) > u,F (X (s)) > u)

Pr(F (X (s)) > u)
,

for u 2 (0, 1).

We define the tail autocorrelation function as the limit (if it exists)

�(h) = lim
u!1

�(h; u) 2 [0, 1].

• By definition, �(0) = 1.

• Usually, �(h) decreases as khk increases.

• �(h) is also called auto-tail dependence function or extremogram.
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Illustration: Empirical (temporal) extremogram
Top row: temporal independence in X (t); bottom row: asymptotic dependence
Left column: u = 0.95; right column: u = 0.99
Dashed red line corresponds to theoretical �(h; u) for independence.
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Summary measures for more than two variables
Consider d random variables X1,X2, . . . ,Xd with d � 2 and Xj ⇠ Fj .

Extremal coe�cient (maxima)

The following limit (if it exists) is called extremal coe�cient:

✓d = lim
u!1

u ⇥ Pr

✓
max

j=1,...,d
X?
j > u

◆

• ✓d = V (1, . . . , 1)

• ✓2 = 2� �.

• Interpretation: d/✓d = average cluster size of jointly extreme events

• With MDA convergence, we have G?(z?, . . . , z?) = exp(�✓d/z?), z? > 0.

Tail dependence coe�cient (minima)

The following limit (if it exists) is called tail dependence coe�cient:

�d = lim
u!1

Pr

✓
min

j=1,...,d
X?
j > u | X?

1 > u

◆
= lim

u!1
u ⇥ Pr

✓
min

j=1,...,d
X?
j > u

◆

• For d = 2, we have �2 = �.

• Extremal coe�cients and tail dependence coe�cients are linked through
inclusion-exclusion formulas using coe�cients for d̃ = 2, . . . , d .
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So far...

• Summary measures for co-occurrences of threshold exceedances

• Focus on minima and maxima of the components of X?

Next...

• More flexibility through more general risk functionals

• Generative and parametric models, not only summaries
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Multivariate and functional threshold exceedances

Consider x 2 RD for a compact domain D ⇢ Rk with |D| > 1.
Note: for a vector x = (x1, . . . , xd ), we can set D = {1, . . . , d}.

No unique definition of threshold exceedances ) Use a risk functional r

Extreme event occurs if r(x) > u with high threshold u

Bivariate illustrations:

Maximum Average Fixed component
r(x1, x2) = max(x1, x2) r(x1, x2) = x1 + x2 r(x1, x2) = x1
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Many relevant choices for risk functionals
To formulate asymptotic theory,
we use continuous homogeneous risk functionals

r : [0,1)D ! [0,1), r(t ⇥ x) = t ⇥ r(x)

and we apply r on the simple scale.
We further assume continuous realizations: x 2 C(D).

There is also notation ` (for loss) instead of r (for risk).

Examples for D = {1, 2, . . . , d}

• Minimum: r(x1, . . . , xd ) = mindj=1 xj

• Maximum: r(x1, . . . , xd ) = maxdj=1 xj

• kth order statistics: r(x1, . . . , xd ) = kth smallest value among x1, . . . , xd
• Specific component: r(x1, . . . , xd ) = xj0

• Arithmetic average: r(x1, . . . , xd ) =
1
d

Pd
j=1 xj

• Geometric average r(x1, . . . , xd ) =
⇣Qd

j=1 xj
⌘1/d

• Any norm, such as r(x1, . . . , xd ) =
⇣Pd

j=1 x
p
j

⌘1/p
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Comparison of arithmetic and geometric average

Arithmetic average:

r(x1, . . . , xd ) =
1

d

dX

j=1

xj

Geometric average:

r(x1, . . . , xd ) =

0

@
dY

j=1

xj

1

A
1/d

• Constant values x1 = . . . = xd ) Geometric = Arithmetic average

• Stronger variability in values xj leads to relatively lower Geometric average
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How to standardize marginal distributions
(recall + extension)

Given Xj ⇠ Fj with continuous distribution function Fj , we apply a probability integral
transform to a standardized scale X?

j satisfying

• X?
j � 0, and

• x ⇥ Pr(X?
j > x) ! 1 as x ! 1, which means Pr(X?

j > x) ⇡ 1/x for large x

Two common choices

• Unit Fréchet scale: X?
j = � 1

logF (j (Xj ))

(makes sense when working with maxima since the unit Fréchet is a GEV)

• Standard Pareto scale: X?
j = 1/(1� Fj (Xj ))

(makes sense when working with exceedances since the standard Pareto is a GPD)

Interpretation of X?
j as the (approximate) return period of Xj :

for an independent copy Xj of Xj , we get

Pr(Xj > Xj | Xj ) ⇡
1

X?
j

for relatively large Xj

(Note: If Pr(A) = 1/T , then the event A has a return period of T time units)
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Limits conditional to risk exceedances r(X ) > u

r -Pareto limit processes (Dombry & Ribatet 2015)

Consider a random element X = {X (s), s 2 D} ⇢ C(D) with compact domain D.

• If we have the following (weak) convergence in C(D),

X?

u
| (r(X?) > u) ! Yr , u ! 1,

then Yr is an r -Pareto process,
satisfying Peaks-Over-Threshold stability:

Yr

u
| (r(Yr ) > u)

d
= Yr , for any u > 1.

• r -Pareto processes are characterized by a scale-profile decomposition:

Yr = R ⇥ V , R = r(Yr ) ⇠ standard Pareto, V =
Yr

r(Yr )
, R ? V

) Above high thresholds u, scale r(X?) and profile X?/r(X?) become independent!
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Link to other limits

• Trinity of limits:

Convergence of componentwise maxima
,

Point-process convergence
,

r -Pareto convergence for r = sup

• r -Pareto convergence for sup ) r -Pareto convergence for all r

• The probability measure of the r -Pareto process Yr is

Yr ⇠
⇤? ( · \ Ar )

⇤? (Ar )
with Ar = {y 2 C(D) | r(y) � 1}

• Consider the simple point-process limit {P?
i , i 2 N}

) Construction of r -Pareto processes =̂ Extraction of r -exceedances:

P?
i | (r(P?

i ) > 1)
d
= Yr
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Illustration: Simulation of r -Pareto processes

• Same realizations of the Poisson point process in all three displays

• Colors correspond to 3 most extreme risks for di↵erent risk functionals r

• Illustrations are on the log((·)?)-scale (Gumbel scale)

r = Value at fixed location r = Geometric Average r = Arithmetic Average
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Example: Geometric average risk for Brown–Resnick
models

The popular Huesler–Reiss and Brown–Resnick models have log-Gaussian profile
processes V for r chosen as the geometric average.

This is very convenient for statistical methods!

Recall: Poisson process has construction {P?
i (s)} = {Ri exp(W̃i (s)� �2(s))} with a

centered Gaussian process W̃ with variance function �2(s)

Log-Gaussian profile processes for r = Geometric average

Given the Pareto process Yr = R ⇥ V , we have

logV (s)
d
= W̃ (s)�W � const(s; �)

with

• a centered Gaussian process W̃ = {W̃ (s), s 2 D} and its spatial average W ,

• a constant const(s; �), explicit in terms of the semivariogram matrix

� = {�(s1, s2), s1, s2 2 D},

of W̃ .

(Result follows from Engelke et al. 2012; Dombry et al. 2016; Engelke et al. 2019)
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Semivariograms for log-Gaussian profile processes

Recall: The log-profile process is

logV (s) = W̃ (s)�W � const(s; �)

Same semivariograms of the log-profile logV and the original Gaussian process W̃ !

�log V (s1, s2) =
1

2
V [logV (s2)� logV (s1)] =

1

2
V
h
W̃ (s2)� W̃ (s1)

i
= �W̃ (s1, s2)

) Classical variogram analysis becomes possible for logV !
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Gridded temperature reanalysis data

• Daily average temperature reanalysis of Météo France
(SAFRAN model at 8km resolution)

• Study period 1991–2020

• Focus on summer temperatures (June-September)

Modeling approach

• Marginal transformation to standard Pareto

• We fit separate r -Pareto models for separate administrative regions

• Daily risk exceedances using Geometric Average of return periods

• Temporal declustering with runs method for the risk series r(X?
t )

• Maximum likelihood using logV with a stable covariance function in W̃
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Study domain: 22 French administrative regions

1800

2100

2400

2700

250 500 750 1000 1250
X

Y

ID_Region
1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
NA

81/89



Results: Marginal GPD parameters

Scale �GP (s) Shape ⇠(s)
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Results: Estimated extremal variograms

Based on the stable covariance function

Cov(Distance) = SD2 ⇥ exp
⇣
�(Distance/Scale)Shape

⌘

(for Distance = k�sk = ks2 � s1k)

and maximum likelihood estimation using observations of logV
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Results: Estimated tail correlations

�(s, s+�s) = lim
u!1

Pr(XP (s+�s) > u | XP (s) > u) = 2
⇣
1� �

⇣p
(�(s, s +�s)

⌘⌘

1800

2100

2400

2700

250 500 750 1000 1250
X

Y

ID_Region
1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
NA

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Distance

Ta
ilC
or
re
la
tio
n

ID_Region
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22

84/89



Results: Empirical/parametric extremal variograms

• Empirical (in dashed lines) and fitted parametric variograms
B Parametric estimates exploit also the Gaussian mean const(s; �)

• Generally satisfactory fit

• During extreme heat days, stronger spatial variability in the Southern regions

North South Atlantic Coast
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Statistical aspects of extreme-value analysis

In practice, we typically have observations of a sample X1, . . . ,Xn with n fixed.

• Most approaches exploit one of three classical representations:
block maxima; threshold exceedances; point patterns.

• Peaks-over-threshold methods o↵er high flexibility, especially by using risk
functionals for dependent extremes.

• We assume that extreme-value limits provide a good approximation for large n or
high threshold u.

• Bias-variance tradeo↵ in statistical estimation:

Higher threshold or Larger block , Less bias but higher variance

• Rough distinction between likelihood-based (parametric) approaches and other
“semi-parametric” approaches

• Likelihood approaches for dependent extremes usually require calculating ⇤(Ar )
for some risk region Ar , which can be computationally very costly, or even
prohibitive if |D| is large.
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Important topics in current extreme-value research

Types of extreme events:

• Application of risk functionals r directly to X and not to standardized X?

• Improved analysis of nonstationary extremes, especially for applications to
climate change

• Compound extremes (in the climate and risk literature)

• Aggregation of not necessarily extreme components leads to extreme impacts

• Example: Persistence of relatively high temperatures and low precipitation leads to
extreme drought conditions

• Subasymptotic extremal dependence that is not stable at observed levels

) Non-asymptotic representations and statistical garantuees?

Methods and algorithms:

• Machine Learning for extreme events

• Scalability of algorithms to large datasets, such as climate-model simulations
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Some literature for further reading

Theory and probabilistic foundation:

• Resnick (1987). Extreme Values, Regular Variation and Point Processes.

Statistical modeling:

• Coles (2001). An introduction to statistical modeling of extreme values.

Mix of both:

• Embrechts, Klüppelberg, Mikosch (1997). Modelling extremal events: for
insurance and finance.

• de Haan, Ferreira (2006). Extreme-value theory: an introduction.

A review of available software (R-based):

• Belzile, Dutang, Northrop, Opitz (2023+). A modeler’s guide to extreme-value
software. https://arxiv.org/abs/2205.07714

89/89


