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lllustration: Spatial co-occurrence of exceedances

Original spatial field

Excursion set above a high threshold
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Assessing co-occurrences of threshold exceedances

Threshold exceedances can occur simultaneously,

e in different variables,
e at nearby locations,

e at close time steps.

Do co-occurrences happen by chance (independence),
or are they correlated in some way?

A simple and flexible exploratory approach

Idea: Study given as

Pr(X1 > u, Xo > u)
Pr(X1 > u) ’

PI‘(X2>U|X1>U)=

and assess how they change with increasing u and for different pairs,
for instance with respect to temporal lag or spatial distance.
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Tail correlation coefficient

Consider a bivariate random vector (X1, X2) with X1 ~ F; and X ~ F,.

Tail correlation
Consider the conditional probability

PI'(F2(X2) > u, Fl(Xl) > u)
Pr(Fl(Xl) > u)

Y

x(u) = Pr(F(X2) > u | F1(X1) > u) =

We define the following limit (if it exists):

x = lim x(u) €[0,1]

The coefficient xy symmetric with respect to X; and X5 and is known as

. We say that
e X7 and X5 are if x > 0;
e Xi and X5 are if x =0.

ue(0,1).

or
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Link between tail correlation and max-stability
We have

Pr(X} > z, X5 > z)
— |lim Pr(X3 >z |X{>2z)= |lim 1 172
X Z—>r 0 I'( 2 | 1 ) Z— 00 Pr(Xl* > Z)

(%)
Assume that (X1, X2) is in the MDA of G. The bivariate max-stable convergence
Fixx xz)(nz,nz)" — G*(z,z), z>0,
Is equivalent to
1— F(Xl*,Xz*)(”Za nz) ~ —log G*(nz, nz), for large n.

By using

Pr(X{" >z, X3 > z) = (1 = Fx;(2)) + (1 — Fxz(2)) — (1 = Fix» x3)(2, 2)),

and — log G*(nz, nz) = % and 1 — G (nz) = 1/(nz) in (x), we obtain
x=2-—V*(1,1).
Remark: asymptotic independence corresponds to classical independence in the

max-stable limit distribution. We have x = 0 if and only if V*(1,1) = 2, and in this
case V*(Zl,ZQ) = 1/21 + 1/22 for z1,z0 > 0, and G*(Zl,ZQ) = Gl*(zl) X GZ*(ZQ).



lllustration: empirical tail correlation
Data setting: n = 200, v = 0.9. A
Blue points: exceedances of empirical distribution function F1(X;) above u.
Red points: exceedances of F»(X>) above u given that F;(X1) is above w.

Empirical tail correlation: {(u) = 2 =0.3.
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Tail autocorrelation function (Extremogram)

Consider X(s) ~ F with index s € RX.
What is the tail correlation at a given distance h = As > 07

For h > 0, we consider the conditional exceedance probability

Pr(F(X(s 4+ h)) > u, F(X(s)) > u)
Pr(F(X(s)) > u)

x(h;u) =Pr(F(X(s+ h)) >u| F(X(s)) >u) =

Y

for u € (0,1).

We define the as the limit (if it exists)

x(h) = fim x(h; u) € [0,1].

e By definition, x(0) = 1.
e Usually, x(h) decreases as ||h|| increases.

e x(h) is also called or
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lllustration: Empirical (temporal) extremogram
Top row: temporal independence in X(t); bottom row: asymptotic dependence
Left column: u = 0.95; right column: v = 0.99
Dashed red line corresponds to theoretical x(h; u) for independence.
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Summary measures for more than two variables
Consider d random variables Xi, Xo,..., Xy with d > 2 and X; ~ F;.

Extremal coefficient (maxima)

The following limit (if it exists) is called

0y = lim u><Pr< madej*>u>

u— 0o Jj=1,...

0s = V(1,...,1)
® 92:2—)(.

Interpretation: d/0; = of jointly extreme events
With MDA convergence, we have G*(z*,...,z*) = exp(—04/2*), z* > 0.

Tail dependence coefficient (minima)

The following limit (if it exists) is called

Ag = lim Pr( min Xj*>u]X1*>u>: lim uxPr( minde*>u>
J J ,

U— 00 =1,...,d U— 00 =1,...

e For d = 2, we have \» = x.

e Extremal coefficients and tail dependence coefficients are linked through

inclusion-exclusion formulas using coefficients for d =2, ...,d.
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So far...

e Summary measures for co-occurrences of threshold exceedances

e Focus on minima and maxima of the components of X*

Next...

e More flexibility through more general risk functionals

e Generative and parametric models, not only summaries
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Multivariate and functional threshold exceedances

Consider x € RP for a compact domain D C R¥ with |D| > 1.
Note: for a vector x = (xy,...,xq), we can set D = {1,...,d}.

No unique definition of threshold exceedances = Use a r

Extreme event occurs if r(x) > u with high threshold v

Bivariate illustrations:

Maximum Average Fixed component
r(xi, x2) = max(xy, x2) r(xi,x2) = x1 + xo r(xi,x2) = x1
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Many relevant choices for risk functionals

To formulate asymptotic theory,
we use

r:[0,00)? = [0,00), r(txx)=txr(x)

and we apply r on the simple scale.
We further assume continuous realizations: x € C(D).

There is also notation £ (for loss) instead of r (for risk).

Examples for D = {1,2,...,d}

. . _ . e _
Minimum: r(xy,...,xq4) = mini_; X;
Maximum: r(x1,...,xq) = maxj‘.f:1 Xj
kth order statistics: r(xy,...,xq) = k" smallest value among x, ...
Specific component: r(xi,...,Xq) = X;,

. . _ 1 «—d
Arithmetic average: r(xi,...,Xxd) = g > i1 X

_ d 1/d

Geometric average r(xi,...,Xq) = (szl XJ)

1/p
Any norm, such as r(xy,...,xq) = (27:1 XJP)

» Xd



72/89

Comparison of arithmetic and geometric average

Arithmetic average:
1
Gt xa) = = >
d =

Geometric average:
1/d

d
r(x1,...,xq) = ij
j=1

e Constant values x; = ... = x4 = Geometric = Arithmetic average

e Stronger variability in values x; leads to relatively lower Geometric average
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How to standardize marginal distributions
(recall + extension)

Given X; ~ F; with continuous distribution function F;, we apply a probability integral
transform to a standardized scale Xj* satisfying

° Xj* > 0, and

e x X Pr(X* > x) — 1 as x = 0o, which means Pr(X* > x) =~ 1/x for large x

Two common choices

e Unit Fréchet scale: X* = —éF(,(XJ))
(makes sense when working with maxima since the unit Fréchet is a GEV)

e Standard Pareto scale: X* = 1/(1 - Fi(X)))
(makes sense when working with exceedances since the standard Pareto is a GPD)

Interpretation of XJ.* as the (approximate) return period of X;:

for an independent copy Yj- of X;, we get

— 1
Pr(X; > X; | Xj) = e for relatively large X;

J

(Note: If Pr(A) = 1/T, then the event A has a return period of T time units)
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Limits conditional to risk exceedances r(X) > u

r-Pareto limit processes (Dombry & Ribatet 2015)
Consider a random element X = {X(s),s € D} C C(D) with compact domain D.

e If we have the following (weak) convergence in C(D),

X*
— | (r(X*)>u) — Y, u— oo,
u

then Y, is an ,
satisfying

Y,
L (r(Yr) > u) 4 Y,, forany u>1.
u

e r-Pareto processes are characterized by a

Yr
r(Y;)’

Y =R xV, R=r(Y,)~ standard Pareto, V = R 1V

=- Above high thresholds v, scale r(X*) and profile X*/r(X*) become independent!




Link to other limits

Trinity of limits:

Convergence of componentwise maxima
<~
Point-process convergence
<~
r-Pareto convergence for r = sup

e r-Pareto convergence for sup = r-Pareto convergence for all r

e The probability measure of the r-Pareto process Y, is

N (-NA)
A (A)

with A, = {y € C(D) | r(y) > 1}

r

Consider the simple point-process limit { P, i € N}

= Construction of r-Pareto processes = Extraction of r-exceedances:

||

Py | (r(P7) > 1) Y,
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lllustration: Simulation of r-Pareto processes

e Same realizations of the Poisson point process in all three displays

e Colors correspond to 3 most extreme risks for different risk functionals r
e lllustrations are on the log((-)*)-scale (Gumbel scale)
r = Value at fixed location

r = Geometric Average

r = Arithmetic Average
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Example: Geometric average risk for Brown—Resnick
models

The popular and have log-Gaussian profile
processes V for r chosen as the geometric average.

This is very convenient for statistical methods!
Recall: Poisson process has construction {P*(s)} = {R; exp(W;(s) — 02(s))} with a
centered Gaussian process W with variance function o2(s)

Log-Gaussian profile processes for r = Geometric average

Given the Pareto process Y, = R x V, we have

log V/(s) ol W(s) — W — const(s;IN)

with

e a centered Gaussian process W = {W/(s), s € D} and its spatial average W,

e a constant const(s; '), explicit in terms of the semivariogram matrix

= {v(s1,52), s1,5 € D},
of W.

(Result follows from Engelke et al. 2012; Dombry et al. 2016; Engelke et al. 2019)
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Semivariograms for log-Gaussian profile processes

Recall: The log-profile process is

log V/(s) = W(s) — W — const(s;T)

Same semivariograms of the log-profile log V and the original Gaussian process W!

Yiog v (51, 52) = %V[Iog V(s:) — log V(s1)] = %V [v"\/(52) _ W(sl)} = v (51, 52)

= Classical variogram analysis becomes possible for log V!
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Gridded temperature reanalysis data

e Daily average temperature reanalysis of Météo France
(SAFRAN model at 8km resolution)

e Study period 1991-2020

e Focus on summer temperatures (June-September)

Modeling approach

e Marginal transformation to standard Pareto

We fit separate r-Pareto models for separate administrative regions

Daily risk exceedances using Geometric Average of return periods

Temporal declustering with runs method for the risk series r(X})

~

e Maximum likelihood using log V with a stable covariance function in W
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Study domain: 22 French administrative regions
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Results: Estimated extremal variograms

Based on the stable covariance function
Cov(Distance) = SD? x exp (—(Distance/ScaIe)ShaPe)
(for Distance = ||As|| = ||s2 — s1]|)

and maximum likelihood estimation using observations of log V
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Results: Estimated tail correlations

x(s,s+As) = uimoo Pr(XP(s+As) > u | XFP(s) > u) =2 (1 — ¢ (\/(7(5,5 -+ As)))
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Results: Empirical /parametric extremal variograms

e Empirical (in dashed lines) and fitted parametric variograms
/\ Parametric estimates exploit also the Gaussian mean const(s; ')

e Generally satisfactory fit

e During extreme heat days, stronger spatial variability in the Southern regions

North South Atlantic Coast
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Statistical aspects of extreme-value analysis

In practice, we typically have observations of a sample Xi, ..., X, with n fixed.

e Most approaches exploit one of three classical representations:
block maxima; threshold exceedances; point patterns.

e Peaks-over-threshold methods offer high flexibility, especially by using risk
functionals for dependent extremes.

e \We assume that extreme-value limits provide a good approximation for large n or
high threshold wu.

° in statistical estimation:

Higher threshold or Larger block < Less bias but higher variance

e Rough distinction between likelihood-based (parametric) approaches and other
“semi-parametric”’ approaches

o Likelihood approaches for dependent extremes usually require calculating A(A/)
for some risk region A,, which can be computationally very costly, or even
prohibitive if |D| is large.
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Important topics in current extreme-value research
Types of extreme events:

e Application of risk functionals r directly to X and not to standardized X*

e Improved analysis of , especially for applications to

o (in the climate and risk literature)

e Aggregation of not necessarily extreme components leads to extreme impacts

e Example: Persistence of relatively high temperatures and low precipitation leads to
extreme drought conditions

° that is not stable at observed levels

= Non-asymptotic representations and statistical garantuees?

Methods and algorithms:

° for extreme events

o of algorithms to large datasets, such as climate-model simulations



Some literature for further reading

Theory and probabilistic foundation:

e Resnick (1987). Extreme Values, Regular Variation and Point Processes.

Statistical modeling:

e Coles (2001). An introduction to statistical modeling of extreme values.

Mix of both:

e Embrechts, Kliippelberg, Mikosch (1997). Modelling extremal events: for
insurance and finance.

e de Haan, Ferreira (2006). Extreme-value theory: an introduction.

A review of available software (R-based):

e Belzile, Dutang, Northrop, Opitz (2023+). A modeler’'s guide to extreme-value
software. https://arxiv.org/abs/2205.07714
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