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Determinantal Point Processes

Determinantal Point Processes (DPP) provide a family of models of random
configurations that favor diversity or repulsion, in the sense that the probability
of observing two points close or similar to each other is lower than in the case
of the Poisson process whose points are independent.

(a) Realization of a DPP
(b) Realization of a Bernoulli

process

• On continuous domains: Introduced by Machhi (1975) for modeling
fermions, regain of interest in spatial statistics with inference procedures
(Lavancier, Møller, Rubak, 2015).
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Determinantal Point Processes

Bruno Galerne (Univ. Orléans) DPP for Image Processing GeoSto 2023 3 / 46



Determinantal Point Processes

• On discrete domains: Numerous applications in machine learning based on
selection of diverse subsets:

• Recommendation systems (Wilhelm et al., 2018).
• Text summarization (Kulesza, Taskar, 2012).
• Feature selection (Belhadji, Bardenet, Chainais, 2018).
• . . .

• Advantages of (discrete) DPPs (compared to Gibbs processes):

• Similarity between points encoded in a matrix K called kernel
• Moments and marginal probabilities have closed form formulas
• Exact simulation algorithm
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Discrete determinantal point processes

In this talk we work on a discrete domain of N sites that we identify with
Y = {1, . . . , N}.
Definition

Let K be a Hermitian matrix of size N ×N such that

0 ≼ K ≼ I.

The random subset Y ⊂ Y defined by the inclusion probabilities

∀A ⊂ Y, P(A ⊂ Y ) = det(KA)

is called a determinantal point process of kernel K.

One writes Y ∼ DPP(K).
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Properties of DPP

• The diagonal coefficients Kii define the inclusion
probability of each element i:

P(i ∈ Y ) = Kii. K	=
Kii

i

i
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Properties of DPP

• The diagonal coefficients Kii define the inclusion
probability of each element i:

P(i ∈ Y ) = Kii.

• The off-diagonal coefficients Kij gives the
repulsion between the points i and j:

P({i, j} ⊂ Y ) = P(i ∈ Y )P(j ∈ Y )− |Kij |2.

• A DPP is repulsive since P({i, j} ⊂ Y ) is always
smaller than in the case of independent point
selection (Bernoulli process).

• By construction, DPPs are simple random sets.

K	=
Kii

i

i

{i,j}

{i,j}
K	=

Kii
KjjK ij
Kij
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Properties of DPP

Let {λ1, . . . ,λN} ∈ R be the eigenvalues of K.
Cardinality: The number |Y | ∼

!

i∈Y

Ber(λi) (sum of in-

dependent Bernoulli random variables of parameter λi).
Hence

E(|Y |) =
!

i∈Y

λi = Tr(K) =
!

i∈Y

Kii

Var(|Y |) =
!

i∈Y

λi(1− λi)

K	=
Kii

K11

KNN
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!

i∈Y

λi(1− λi)
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Kii

K11

KNN

Two examples of DPP:

• Bernoulli Point Process:
Yi are independent following some Bernoulli distribution with parameter
pi. This is a DPP for the diagonal kernel K = diag(p1, . . . , pN ).

• Projection DPP:
∀i ∈ Y, λi = 0 or 1.

Notice that for projection DPP the cardinal |Y | is fixed: |Y | =
"

i λi.
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!
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K	=
Kii

K11

KNN

Two examples of DPP:

• Bernoulli Point Process:
Yi are independent following some Bernoulli distribution with parameter
pi. This is a DPP for the diagonal kernel K = diag(p1, . . . , pN ).

• Projection DPP:
∀i ∈ Y, λi = 0 or 1.

Notice that for projection DPP the cardinal |Y | is fixed: |Y | =
"

i λi.

Exact sampling algorithm using spectral decomposition of K
(Hough-Krishnapur-Peres-Virág)
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Motivation

Motivation: Take advantage of the repulsive nature of DPP to:

• Sample subsets of well-spread pixels in image domain and use them for
texture modeling based on shot noise.

• Subsample the set of patches of an image to efficiently summarize the
diversity of the patches.
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Outline

I. Determinantal point processes on pixels

II. Shot noise models driven by Determinantal Pixel Processes

III. Identifiability and Inference for Determinantal Pixel Processes

IV. Subsampling image patches using Determinantal Point Processes
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I. Determinantal point processes on
pixels



Determinantal pixel processes (DPixP)

Framework for images:
Image domain: A discrete grid Ω of size N1 ×N2, N = N1N2 is the total
number of pixels.
We consider a DPP Y defined on Ω, with kernel K, a matrix of size N ×N .
Hypothesis: Y is stationary (with periodic boundary conditions)

N

N1

2

A sample
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Determinantal pixel processes (DPixP)

Framework for images:
Image domain: A discrete grid Ω of size N1 ×N2, N = N1N2 is the total
number of pixels.
We consider a DPP Y defined on Ω, with kernel K, a matrix of size N ×N .
Hypothesis: Y is stationary (with periodic boundary conditions)

• K is a block-circulant matrix with circulant blocks: There exists a
function C : Ω → C s.t.

∀x, y ∈ Ω, Kxy = C(x− y).

• K is diagonalized in the 2D Discrete Fourier transform and the eigenvalues
of K are the Fourier coefficients of C.

Kernel function C Fourier coefficients !C

N

N1

2

A sample
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The 2D discrete Fourier transform

Let f : Ω → C be a function defined on Ω = {0, . . . , N1 − 1}× {0, . . . , N2 − 1}.
Its discrete Fourier transform #f is the function defined on Ω by

∀ξ ∈ Ω, #f(ξ) =
!

x∈Ω

f(x)e−2iπ〈x,ξ〉,

where for x = (x1, x2) ∈ Ω and ξ = (ξ1, ξ2) ∈ Ω, we denote the scalar product

〈x, ξ〉 = x1ξ1
N1

+
x2ξ2
N2

.
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Let f : Ω → C be a function defined on Ω = {0, . . . , N1 − 1}× {0, . . . , N2 − 1}.
Its discrete Fourier transform #f is the function defined on Ω by

∀ξ ∈ Ω, #f(ξ) =
!

x∈Ω

f(x)e−2iπ〈x,ξ〉,

where for x = (x1, x2) ∈ Ω and ξ = (ξ1, ξ2) ∈ Ω, we denote the scalar product

〈x, ξ〉 = x1ξ1
N1

+
x2ξ2
N2

.

1. Inversion: we can recover f from #f , by the inverse discrete Fourier
transform

∀x ∈ Ω, f(x) =
1

|Ω|
!

ξ∈Ω

#f(ξ)e2iπ〈x,ξ〉.

2. Parseval Theorem:

‖f‖22 =
!

x∈Ω

|f(x)|2 =
1

|Ω|
!

ξ∈Ω

| #f(ξ)|2 =
1

|Ω|‖
#f‖22.

3. Convolution/Product: The (periodic) convolution being defined by

∀x ∈ Ω, f # g(x) =
!

y∈Ω

f(y)g(x− y), then ∀ξ ∈ Ω, !f # g(ξ) = #f(ξ)#g(ξ).
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Determinantal pixel processes (DPixP)

Definition

Let C : Ω → C be a function defined on Ω such that

∀ξ ∈ #Ω, #C(ξ) is real and 0 ≤ #C(ξ) ≤ 1.

Such a function will be called an admissible kernel. A random set X ⊂ Ω is
called a determinantal pixel process (DPixP) with kernel C, if

∀A ⊂ Ω, P(A ⊂ X) = det(KA),

with KA the matrix of size |A|× |A| s.t. KA = (C(x− y))x,y∈A.
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Properties of DPixP

Cardinal: |X| ∼
!

ξ∈Ω

Ber( #C(ξ)) and in particular

E(|X|) =
!

ξ∈Ω

#C(ξ) = |Ω|C(0) and Var(|X|) =
!

ξ∈Ω

#C(ξ)(1− #C(ξ))
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Properties of DPixP

Cardinal: |X| ∼
!

ξ∈Ω

Ber( #C(ξ)) and in particular

E(|X|) =
!

ξ∈Ω

#C(ξ) = |Ω|C(0) and Var(|X|) =
!

ξ∈Ω

#C(ξ)(1− #C(ξ))

Two examples:

1. Bernoulli Process:

C(0) = p and C(x) = 0, ∀x ∈ Ω\{0}

⇔ ∀ξ ∈ Ω, #C(ξ) = p.
!C Realization

2. Projection DPixP:

∀ξ ∈ Ω, #C(ξ)(1− #C(ξ)) = 0.

!C Realization
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Properties of DPixP

Remark: Bernoulli point processes have the property of being the processes
such that Var(|X|) is maximal among all DPixP with same E(|X|).

Indeed, let p ∈ [0, 1] and let C be any admissible kernel such that
E(|X|) =

"
ξ∈Ω

#C(ξ) = p|Ω|. Then, by Schwarz inequality,

Var(|X|) =
!

ξ∈Ω

#C(ξ)−
!

ξ∈Ω

#C(ξ)2 = p|Ω|−
!

ξ∈Ω

#C(ξ)2

≤ p|Ω|− 1

|Ω|

$

%
!

ξ∈Ω

#C(ξ)

&

'
2

= p(1− p)|Ω|.

And the equality holds when all #C(ξ) are equal to p, i.e. C = pδ0.
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Sequential simulation of a DPixP

Let us denote, for ξ ∈ Ω, the function ϕξ defined on Ω by

∀x ∈ Ω, ϕξ(x) =
1√
MN

e2iπ〈x,ξ〉.

Then {ϕξ}ξ∈Ω is an orthonormal basis of L2(Ω;C).

Algorithm: Sequential simulation of a DPixP

• Sample a random field U = (Uξ)ξ∈Ω where the Uξ are i.i.d. uniform on
[0, 1].

• Define the “active frequencies” {ξ1, . . . , ξn} = {ξ ∈ Ω;U(ξ) ≤ #C(ξ)}, and
denote,

∀x ∈ Ω, v(x) = (ϕξ1(x), . . . ,ϕξn(x)) ∈ Cn.

• For k = 1 to n do:
• Sample X1 uniform on Ω, and define e1 = v(X1)/‖v(X1)‖.
• For k = 2 to n, sample Xk from the probability density pk on Ω, defined by

∀x ∈ Ω, pk(x) =
1

n− k + 1

!

" n

MN
−

k−1#

j=1

|e∗j v(x)|2
$

%

• Define ek = wk/‖wk‖ where wk = v(Xk)−
&k−1

j=1 e∗j v(Xk)ej .

• Return X = (X1, . . . , Xn).
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DPixP and hard-core repulsion

Can we impose a minimal distance between points from
a DPixP? What are the consequences on the kernel C?

Proposition

Let us consider X ∼ DPixP(C) on Ω and e ∈ Ω. Then the following propositions
are equivalent:

1. For all x ∈ Ω, the probability that x and x+ e belong simultaneously to X

is zero.

2. For all x ∈ Ω, the probability that x and x+ λe belong simultaneously to
X is zero for λ ∈ Q such that λe ∈ Ω.

3. There exists θ ∈ R such that the only frequencies ξ ∈ Ω such that #C(ξ) is
nonzero are located on the discrete line defined by 〈e, ξ〉 = θ.

4. X contains almost surely at most one point on every discrete line of
direction e.

This is called directional repulsion.
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DPixP and hard-core repulsion

Example: Horizontal repulsion

!C Real part of C Density during Realization
sampling
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DPixP and hard-core repulsion

Example: Horizontal repulsion

!C Real part of C Density during Realization
sampling

Conclusion on hard-core repulsion: The only
DPixP imposing a minimum distance between
the points is the degenerate DPixP consisting
of a single pixel.
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II. Shot noise models driven by
Determinantal Pixel Processes



Shot noise and texture modeling

The spot noise was introduced by J. van Wijk (Computer Graphics, 1991) for
texture synthesis. Using a Poisson points process {xi} ⊂ R2, it has the form

∀x ∈ R2, S(x) =
!

i

βig(x− xi).

Lagae et al. “Procedural noise using sparse Gabor convolution”, SIGGRAPH 2009

G., Leclaire, Moisan, “Texton noise", CGF
2017, based on Gaussian limit of Poisson shot
noise.
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Shot noise driven by a DPixP

Definition: Shot noise driven by a DPixP

Let C be an admissible kernel, and let g be a function defined on Ω. Then, the
shot noise random field S driven by the DPixP of kernel C and the spot g is
defined by

∀x ∈ Ω, S(x) =
!

xi∈X

g(x− xi),

where X = {xi} is a DPixP of kernel C.
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Shot noise driven by a DPixP

Definition: Shot noise driven by a DPixP

Let C be an admissible kernel, and let g be a function defined on Ω. Then, the
shot noise random field S driven by the DPixP of kernel C and the spot g is
defined by

∀x ∈ Ω, S(x) =
!

xi∈X

g(x− xi),

where X = {xi} is a DPixP of kernel C.

To compute the moments (mean, variance, kurtosis, etc.) of S, we first need
to have a “Mecke-Campbell-Slivnyak” type formula in the DPixP framework.

Proposition: Moments formula

Let X be a DPixP of kernel C, let k ≥ 1 be an integer, and let f be a function
defined on Ωk. Then

E

(

)
∕=!

xi1
,...,xik

∈X

f(xi1 , . . . , xik )

*

+ =
!

y1,...,yk∈Ω

f(y1, . . . , yk) det(C(yi−yj)1≤i,j≤k)
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Shot noise driven by a DPixP: Moments

1. Mean value:
E(S(0)) = C(0)

!

y∈Ω

g(y) = C(0)#g(0).

2. Covariance: (assume #g(0) = 0)

∀x ∈ Ω, ΓS(x) := Cov(S(0), S(x)) = C(0)g # g−(x)− (g # g− # |C|2)(x),

where g−(x) := g(−x). And therefore

Var(S(0)) = C(0)
!

y∈Ω

g(y)2 − (g # g− # |C|2)(0)

and ,ΓS(ξ) = |#g(ξ)|2(C(0)− -|C|2(ξ)).
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1. Mean value:
E(S(0)) = C(0)

!

y∈Ω

g(y) = C(0)#g(0).

2. Covariance: (assume #g(0) = 0)

∀x ∈ Ω, ΓS(x) := Cov(S(0), S(x)) = C(0)g # g−(x)− (g # g− # |C|2)(x),

where g−(x) := g(−x). And therefore

Var(S(0)) = C(0)
!

y∈Ω

g(y)2 − (g # g− # |C|2)(0)

and ,ΓS(ξ) = |#g(ξ)|2(C(0)− -|C|2(ξ)).

The variance depends on the spot g and the DPP kernel C in a non trivial way.
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Shot noise driven by a DPixP

Var(S(0)) = C(0)
!

y∈Ω

g(y)2 − (g # g− # |C|2)(0)

=
n

|Ω|2
!

ξ∈Ω

|#g(ξ)|2 − 1

|Ω|2
!

ξ,ξ′∈Ω

|#g(ξ − ξ′)|2 #C(ξ) #C(ξ′).

Proposition: Shot noise with extreme variance

Consider a spot function g : Ω → R+ and n ∈ N an expected cardinal for the
DPixP.
Maximal variance: The DPixP with expected cardinal n associated with the spot
g reaching maximal variance is the Bernoulli process.
Minimal variance: The DPixP with expected cardinal n associated with the spot
g reaching maximal variance is the projection DPixP of n points, such that the
n frequencies {ξ1, ..., ξn} associated with the non-zero Fourier coefficients are
localized to maximize

!

ξ,ξ′∈{ξı,...,ξn}

|#g(ξ − ξ′)|2.

To approximate the maximization of the quadratic functional we use a simple
greedy algorithm.
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Shot noise driven by a DPixP

Spot g
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Shot noise driven by a DPixP

Spot g Shot noise with maximal
variance (BPP)
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Shot noise driven by a DPixP

Spot g Shot noise with maximal
variance (BPP)

Fourier Coefficients
from greedy algorithm
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Fourier Coefficients Kernel C
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Shot noise driven by a DPixP

Spot g Shot noise with maximal
variance (BPP)

Fourier Coefficients Kernel C A realization
from greedy algorithm of DPixP(C)
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Shot noise driven by a DPixP

Spot g Shot noise with maximal
variance (BPP)

Fourier Coefficients Kernel C A realization Shot noise with
from greedy algorithm of DPixP(C) minimal variance
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Shot noise driven by a DPixP

Spot g Shot noise with maximal
variance (BPP)

Fourier Coefficients Kernel C Shot noise with
from greedy algorithm de ce DPixP minimal variance
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Shot noise driven by a DPixP

Spot g Shot noise with maximal
variance (BPP)

Fourier Coefficients Kernel C Shot noise with
from greedy algorithm de ce DPixP minimal variance
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Shot noise driven by a DPixP: Limit theorems

• Law of large numbers and central limit theorem exist for shot noise based
on DPixP.

• One needs to use increasing-domain asymptotics: Expand the DPP to Z2

and let the support of the kernel grow1: SM (y) =
1

M2

!

x∈X

g
.
y − x

M

/
.

(a) Spot (b) SM , M = 1 (c) SM , M = 2

(d) SM , M = 3 (e) SM , M = 6 (f) N (0,Σ(C))

1Shirai, Takahashi, 2003. Soshnikov, 2002.
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Shot noise driven by a DPixP: Limit theorems

For limit theorems, one needs to use increasing-domain asymptotics: Expand
the DPP to Z2 and let the support of the kernel grow2.
Proposition

Let g be a continuous function on R2 with compact support, X ∼ DPixP(C)

and SM the shot noise: SM (y) =
1

M2

!

x∈X

g
.
y − x

M

/
, ∀y ∈ Z2. Then,

SM (0) =
1

M2

!

x∈X

g
.
− x

M

/
−−−−→
M→∞

C(0)

0

R2

g(x)dx, a.s and in L1. (1)

If g has zero mean, ∀x1, ..., xm ∈ Z2,
√
M2 (SM (x1), · · · , SM (xm))

L−−−−→
M→∞

N (0,Σ(C)) (2)

with, for all k, l ∈ {1, · · · ,m},

Σ(C)(k, l) =
1
C(0)− ‖C‖22

2
Rg(xl − xk).

where Rg is the autocorrelation of g.
2Shirai, Takahashi, 2003. Soshnikov, 2002.
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III. Identifiability and Inference for
Determinantal Pixel Processes



Inference for DPixP

Inference: We look for a kernel C that would corresponds to one (or several)
realizations of a subset of pixels.

A given realization

?

Which is the
corresponding
DPixP(C)?
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Inference for DPixP

Inference: We look for a kernel C that would corresponds to one (or several)
realizations of a subset of pixels.

A given realization

?

Which is the
corresponding
DPixP(C)?

Identifiability of the problem:
What is the equivalence class of a given kernel C?
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Inference for DPixP - Identifiability

Proposition

Let C1, C2 be two kernels defined on Ω, satisfying some reasonable hypotheses1.
Then, DPixP(C1) = DPixP(C2) if and only if the Fourier coefficients of C2 are
translated and/or symmetric with respect to (0, 0) from the Fourier coefficients
of C1

Three DPixP kernels belonging the same equivalence class: They parameterize
the same DPixP

,C1
,C2

,C3

1 Hartfiel, D. J., and Loewy, R. On matrices having equal corresponding principal minors.
(Apr. 1984).

Bruno Galerne (Univ. Orléans) DPP for Image Processing GeoSto 2023 28 / 46



Inference for DPixP

• Input: J realizations, Y1, . . . , YJ , from the same DPiXP with unknown C

kernel.

• Empirical estimator of the cardinal n = 1
J
(|Y1|+ · · ·+ |YJ |)

• Let us consider the conditional distribution

pC(x) =

3
45

46

P(x ∈ X| 0 ∈ X) = C(0)− |C(x)|2

C(0)
if x ∕= 0,

0 if x = 0.

• Using stationarity an empirical estimator of pC is

θJ(x) =

3
445

446

1

nJ

J!

i=1

!

y∈Ω

1Yi(y)1Yi(y + x) if x ∕= 0,

0 if x = 0.

.
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Inference for DPixP

• Input: J realizations, Y1, . . . , YJ , from the same DPiXP with unknown C

kernel.

• Empirical estimator of the cardinal n = 1
J
(|Y1|+ · · ·+ |YJ |)

• Let us consider the conditional distribution

pC(x) =

3
45

46

P(x ∈ X| 0 ∈ X) = C(0)− |C(x)|2

C(0)
if x ∕= 0,

0 if x = 0.

• Using stationarity an empirical estimator of pC is

θJ(x) =

3
445

446

1

nJ

J!

i=1

!

y∈Ω

1Yi(y)1Yi(y + x) if x ∕= 0,

0 if x = 0.

.

• We propose to solve minC ‖pC − θJ‖22 under the set of admissible kernels
with expected cardinal n using projected gradient descent.

• Convex constraint but highly non convex functional, a careful initialization
is important (heuristic).
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Inference for DPixP

Inference of the Fourier coefficients from 1, 10 and 100 realizations. (ℓ2 distance)

12.7 10.5 7.1

a)
24.3 12.6 8.0

b)
21.8 21.2 17.3

c)
23.5 20.4 15.4

d)
'C Realization J = 1 J = 10 J = 100
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Inference for DPixP

Inference of the Fourier coefficients from 1, 10 and 100 realizations. (ℓ2 distance)

16.3 16.2 15.7

a)
17.8 17.0 14.2

b)
18.8 18.5 15.7

c)
'C Realization J = 1 J = 100 J = 800

Conclusion: Satisfying results for projection DPixP, using a fast estimation
algorithm.
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IV. Subsampling image patches using
Determinantal Point Processes



Subsampling image patches using DPP

DPPs are widely used in statistics and in machine learning for selecting diverse
subsets of points : k-means initialization, text summary (Kulesza-Taskar,
Dupuy-Bach ..,), feature selections (Belhadji-Bardenet-Chainais), etc.

ℝω
2

ω
ω

Patches of an image are seen as points in patch space3.

Question: What is the best kernel K to subsample image patches?
3Houdard, A., Some advances in patch-based image denoising, Thèse de doctorat, Université
Paris-Saclay (2018).
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Discrete DPPs and L-ensembles

• Back to the general discrete setting with Y = {1, . . . , N} and a matrix K

to determine Y ∼ DPP(K).

• K is Hermitian and has its eigenvalues in the interval [0, 1].

• If 1 is not an eigenvalue of K, one sets L = K(I −K)−1 and one has the
marginal probability

∀A ⊂ Y, P(Y = A) =
det(LA)

det(I + L)
.

• Conversely, given any Hermitian matrix L ≽ 0 defines a DPP by setting
K = L(L+ I)−1 the spectrum of which is within [0, 1). This is called an
L-ensemble.

• An L-ensemble kernel L is easier to manipulate for parametric modeling
(e.g. rescale by multiplying by any constant etc.). K and L share the
same eigenvectors.
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Subsampling image patches using DPP

We define on the set of patches P = {pi, 1 ≤ i ≤ N} an admissible matrix K

or an L-ensemble kernel L to define K = L(L+ I)−1.

We consider several examples of kernels:

• Gaussian kernel based on the intensity of the patches:

Lij = exp

7
−‖pi − pj‖22

s2

8

The parameter s is fixed as the median of the distances of intensities
between the patches.

• Gaussian kernel based on the k first PCA components of patches:

Lij = exp

7
−‖PCAi − PCAj‖22

s2

8

• Kernel based on a quality/diversity decomposition, where
qi ∈ R+, φi ∈ RD, s.t. ‖φi‖2 = 1, Lij = qiφ

T
i φjqj

• Projection kernel K obtained in maximizing a reconstruction evaluation

E

$

%
!

pi∈P

!

Q∈Q

1‖pi−Q‖2≤α

&

' , where Q ∼ DPP(K).
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Subsampling image patches using DPP

Reconstruction of an image from patches sampled by DPP:

Each patch in the image is replaced by its closest representative in the subset
Y ∼ DPP(K) (nearest neighbor for the ℓ2-distance).
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Comparison of the different kernels for patch subsampling

Expected cardinal of the DPP: 5 patches.
Each patch in the image is replaced by its closest representative in the subset
Y ∼ DPP(K) (nearest neighbor for the ℓ2-distance).

Original

Uniform select. Intensity kernel PCA kernel Qual-div kernel Optim. kernel

PSNR 19.1 17.8 20.2 18.0 17.6
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Comparison of the different kernels for patch subsampling

Expected cardinal of the DPP: 25 patches.
Each patch in the image is replaced by its closest representative in the subset
Y ∼ DPP(K) (nearest neighbor for the ℓ2-distance).

Original

Uniform select. Intensity kernel PCA kernel Qual-div kernel Optim. kernel

PSNR 21.3 24.3 24.4 22.6 22.5
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Comparison of the different kernels for patch subsampling

Expected cardinal of the DPP: 100 patches.
Each patch in the image is replaced by its closest representative in the subset
Y ∼ DPP(K) (nearest neighbor for the ℓ2-distance).

Original

Uniform select. Intensity kernel PCA kernel Qual-div kernel Optim. kernel

PSNR 23.4 28.6 27.4 27.4 25.1
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Comparison of the different kernels for patch subsampling

Reconstruction errors for the previous image VS. expected cardinal

• {pi, 1 ≤ i ≤ N}, patches of the image
• Q ∼ DPP(K), subset of patches sampled using the given DPP
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0.5

1

1.5

2

2.5
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3.5
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4.5
Intensity kernel
PCA kernel
Qual/div kernel
Best kernel
Bernoulli kernel
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PCA kernel
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Best kernel
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18
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Intensity kernel
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Bernoulli kernel

(a) E1 =
1

N

N#

i=1

d(pi,Q)2 (b) E2 = max
i∈{1,...,N}

d(pi,Q)2 (c) PSNR

Conclusion:

• Uniform sampling lags always behind.
• Qual/div and optimized kernels are not competitive and limited in cardinal

by construction.
• Intensity and PCA kernels are the best choice for every measurements.
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Texture synthesis by example

Generate a texture image visually similar to an input texture image

• Strategy4:

• Generate a Gaussian random field U with same mean and covariance as the
input texture5.

• Define an optimal transport map T to correct the Gaussian patch
distribution from the empirical patch distribution of the original texture.

• Use T to correct the local features of the Gaussian image U .

4G., Leclaire, Rabin. A texture synthesis model based on semi-discrete optimal transport in
patch space (2018).
5G., Gousseau, Morel, Random Phase Textures: Theory and Synthesis (2011)
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Acceleration of a texture synthesis by example algorithm

• Synthesis time is highly dependent on the size of the patch distribution.

• Initial strategy: uniform selection of 1000 patches.

• Contribution6: Subsampling of the patch space using a DPP to better
represent the patch set.

Proposition: Select only 100 or 200 patches thanks to a DPP of kernel
K = L(L+ I)−1 with

∀i, j ∈ {1, . . . , I}, Lij = exp

7
−‖pi − pj‖22

s2

8

6C. Launay, A. Leclaire., Determinantal Patch Processes for Texture Synthesis, In GRETSI
2019.
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Acceleration of a texture synthesis by example algorithm

• Selection of a subset of patches with the DPP

Q = {qj , 1 ≤ j ≤ J} ∼ DPP(K).

• Estimation of the summarized patch distribution

ν∗ =
J!

j=1

ν∗
j δqj

with weights ν∗
j obtained by minimizing the Wasserstein distance between

ν and the empirical distribution of all the patches.
• DPP simulation: Done only once during the estimation of the transport

map T .

Acceleration: To synthesize an image of size 1024× 1024:

• Original algorithm: 1000 patches. Time: 1.7”.
• Proposed DPP-based strategy:

Nb of patches 50 100 200
Time 0.19” 0.28” 0.47”
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Acceleration of a texture synthesis by example algorithm

Original Unif-1000 Unif-100 DPP-100
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Comparaisons - 1000 patchs / 100 patchs sampled with DPP

Original texture
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Comparaisons - 1000 patchs / 100 patchs sampled with DPP

1000 patches sampled uniformly
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Comparaisons - 1000 patchs / 100 patchs sampled with DPP

100 patches sampled with DPP

In general the visual quality is maintained, but one observe some detail loss
for complex textures.
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IV. Conclusion et perspectives



Conclusion et perspectives

1. Determinantal Pixel Processes
• Definition of a class of DPP adapted to the pixels of an image.
• Study of the shot noise models driven by DPixP.
• Inference of the kernel function C of DPixP from one or several realizations.
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Conclusion et perspectives

1. Determinantal Pixel Processes
• Definition of a class of DPP adapted to the pixels of an image.
• Study of the shot noise models driven by DPixP.
• Inference of the kernel function C of DPixP from one or several realizations.

• Study of the convergence of the proposed inference algorithm.
• Texture modeling using shot noise: Joint estimation of the DPixP kernel

and the spot function given an input texture.

2. DPP on the patches of an image
• Comparison of several DPP kernels for subsampling patches.
• Application of such a DPP to accelerate a texture synthesis algorithm based

on patch distribution.

• Evaluate a priori the complexity of a patch distribution/texture to infer the
proper number of patches (i.e. expected cardinal) for the DPP.
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Spectral sampling algorithm

Exact sampling algorithm using spectral decomposition of K
(Hough-Krishnapur-Peres-Virág)

• Eigendecomposition (λj , v
j) of the matrix K.

• Select active frequencies: Sample a Bernoulli process X ∈ {0, 1}N with
parameter (λj)j .
Denote n the number of active frequencies, {X = 1} = {j1, . . . , jn}.
and the matrix V =

1
vj1 vj2 · · · vjn

2
∈ RN×n with Vk ∈ Rn the

k-th row of V , for k ∈ Y.

• Output the sequence Y = {y1, y2, . . . , yn} sequentionaly sampled as
follows:
For l = 1 to n:

• Draw a point yl ∈ Y from the probability distribution

plk =
1

n− l + 1

(
‖Vk‖2 −

l−1#

m=1

|〈Vk, em〉|2
)

, ∀k ∈ Y.

• If l < n, define el =
wl

‖wl‖
∈ Rn where wl = Vyl −

&l−1
m=1〈Vyl , em〉em.
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Inference for DPixP - Identifiability

Proposition

Let C1, C2 be two kernels defined on Ω, satisfying some reasonable hypotheses1

with associated matrices K1 and K2 s.t. K1 is irreducible. If N ≥ 4, we
suppose also that, for all partition of Y in two subsets α, β, |α| ≥ 2, |β| ≥ 2,
rank (K1)α×β ≥ 2.
Then, DPixP(C1) = DPixP(C2) if and only if the Fourier coefficients of C2 are
translated and/or symmetric with respect to (0, 0) from the Fourier coefficients
of C1 that is

DPixP(C1) = DPixP(C2) ⇐⇒ ∃ τ ∈ Ω s.t. either ∀ξ ∈ Ω, #C2(ξ) = #C1(ξ − τ)

ou ∀ξ ∈ Ω, #C2(ξ) = #C1(−ξ − τ).

Two cases if K1 do not satisfy the hypotheses:

• K1 is irreducible but there exists a partition (α,β) s. t. the
rank(K1)α×β = 1.

• K1 is similar by permutation of a block diagonal matrix with similar
blocks: This is a degenerate case e.g. with intermixed independent copies
of the same DPP on a smaller grid.
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