

Texture Modeling: Self-Similar Gaussian Fields and Monogenic Signal

Claire Launay

Joint work with Hermine Biermé (IDP, Tours), Céline Lacaux (LMA, Avignon) and Philippe Carré (XLIM, Limoges)

June 15th 2023

Stochastic Geometry Days

Introduction

Goal: Texture modeling and analysis

• Exemplar-based texture synthesis

• Medical diagnostic: e.g. difference between dense and fatty breast tissue¹

Self-similar random fields using the monogenic signal: Riesz transform.

¹BIRADS database

1. Self-similar Gaussian random fields

2. Monogenic signal and multiscale analysis

3. Monogenic parameters for anisotropy and self-similarity estimation

Harmonizable random fields with stationary increments

Harmonizable random fields with stationary increments

Given W an isotropic complex Gaussian measure and f a spectral density function, the random field defined for all $x \in \mathbb{R}^2$, by

$$X(x) := \Re\left(\int [e^{-ix\cdot\xi} - 1]\sqrt{f(\xi)}W(d\xi)
ight)$$

is a Gaussian random field with stationary increments, meaning that

$$\forall x_0 \in \mathbb{R}^2, \{X(x+x_0) - X(x); x \in \mathbb{R}^2\} \stackrel{d}{=} \{X(x); x \in \mathbb{R}^2\}.$$

Harmonizable random fields with stationary increments

Harmonizable random fields with stationary increments

Given W an isotropic complex Gaussian measure and f a spectral density function, the random field defined for all $x \in \mathbb{R}^2$, by

$$X(x) := \Re\left(\int [e^{-ix\cdot\xi} - 1]\sqrt{f(\xi)}W(d\xi)
ight)$$

is a Gaussian random field with stationary increments, meaning that

$$\forall x_0 \in \mathbb{R}^2, \{X(x+x_0) - X(x); x \in \mathbb{R}^2\} \stackrel{d}{=} \{X(x); x \in \mathbb{R}^2\}.$$

Given a function $u: \mathbb{R}^2 \to \mathbb{R}$ such that $|\widehat{u}(\xi)| \leq C \min(1, |\xi|)$, define the generalized field

$$\langle X, u \rangle := \Re \left(\int_{\mathbb{R}^2} \widehat{u}(\xi) \sqrt{f(\xi)} W(d\xi) \right).$$

Harmonizable random fields with stationary increments

Harmonizable random fields with stationary increments

Given W an isotropic complex Gaussian measure and f a spectral density function, the random field defined for all $x \in \mathbb{R}^2$, by

$$X(x) := \Re\left(\int [e^{-ix\cdot\xi} - 1]\sqrt{f(\xi)}W(d\xi)
ight)$$

is a Gaussian random field with stationary increments, meaning that

$$\forall x_0 \in \mathbb{R}^2, \{X(x+x_0) - X(x); x \in \mathbb{R}^2\} \stackrel{d}{=} \{X(x); x \in \mathbb{R}^2\}.$$

Given a function $u: \mathbb{R}^2 \to \mathbb{R}$ such that $|\widehat{u}(\xi)| \leq C \min(1, |\xi|)$, define the generalized field

$$\langle X, u \rangle := \Re \left(\int_{\mathbb{R}^2} \widehat{u}(\xi) \sqrt{f(\xi)} W(d\xi) \right).$$

Then, $\operatorname{Cov}(\langle X, u \rangle, \langle X, v \rangle) = \Re \left(\int_{\mathbb{R}^2} \hat{u}(\xi) \hat{v}(\xi) f(\xi) d\xi \right)$ and for X a Gaussian random field with stationary increment,

$$\langle X, u \rangle \sim \mathcal{N}\left(0, \int_{\mathbb{R}^2} |\widehat{u}(\xi)|^2 f(\xi) d\xi\right).$$

Self-similar random field

For $H \in (0, 1)$ and a spectral density $f : \xi \mapsto t\left(\frac{\xi}{|\xi|}\right) |\xi|^{-2H-2}$, with $t \in L^1(S^1)$ is defined on the unit sphere, even and positive, such that $f \in L^1(\mathbb{R}^2, \min(1, |\xi|^2 d\xi))$. Then, the random field X associated to f is self-similar of order H, meaning that

$$\{X(\lambda x); x \in \mathbb{R}^2\} \stackrel{d}{=} \lambda^H \{X(x); x \in \mathbb{R}^2\}.$$

² Biermé, Moisan, Richard, A Turning-Band Method for the Simulation of Anisotropic Fractional Brownian Fields, 2015

Self-similar random field

For $H \in (0, 1)$ and a spectral density $f : \xi \mapsto t\left(\frac{\xi}{|\xi|}\right) |\xi|^{-2H-2}$, with $t \in L^1(S^1)$ is defined on the unit sphere, even and positive, such that $f \in L^1(\mathbb{R}^2, \min(1, |\xi|^2 d\xi))$. Then, the random field X associated to f is self-similar of order H, meaning that

$$\{X(\lambda x); x \in \mathbb{R}^2\} \stackrel{d}{=} \lambda^H \{X(x); x \in \mathbb{R}^2\}.$$

Example: Elementary fields² Consider $\delta \in (0, \frac{\pi}{2}]$ and $t_{\delta}(\alpha) = 1_{|\alpha| \le \delta}$ for $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2}]$. For $\delta = \frac{\pi}{2}$, X is the isotropic fractional Brownian field.

 2 Biermé, Moisan, Richard, A Turning-Band Method for the Simulation of Anisotropic Fractional Brownian Fields, 2015

Riesz transforms³ Given a signal $s \in L^2(\mathbb{R}^2)$, the Riesz transforms are defined, for k = 1, 2 by

$$\mathcal{R}_{k}(s)(x) = \frac{1}{2\pi} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{2} \setminus B_{\varepsilon}(x)} \frac{x_{k} - y_{k}}{|x - y|^{3}} s(y) dy.$$
(1)

Then,

$$\widehat{\mathcal{R}_k(s)}(\xi) = -i \frac{\xi_k}{|\xi|} \widehat{s}(\xi) ext{ for } \xi \in \mathbb{R}^2.$$

The associated monogenic signal $s_M(x)$ is a signal in \mathbb{R}^3

$$s_M(x) = \begin{bmatrix} s(x) \\ \mathcal{R}_1(s)(x) \\ \mathcal{R}_2(s)(x) \end{bmatrix}$$

³M. Felsberg et G. Sommer, The monogenic signal, 2001

Riesz transforms³ Given a signal $s \in L^2(\mathbb{R}^2)$, the Riesz transforms are defined, for k = 1, 2 by

$$\mathcal{R}_{k}(s)(x) = \frac{1}{2\pi} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{2} \setminus B_{\varepsilon}(x)} \frac{x_{k} - y_{k}}{|x - y|^{3}} s(y) dy.$$
(1)

Then,

$$\widehat{\mathcal{R}_k(s)}(\xi) = -i \frac{\xi_k}{|\xi|} \widehat{s}(\xi) \text{ for } \xi \in \mathbb{R}^2.$$

The associated **monogenic signal** $s_M(x)$ is a signal in \mathbb{R}^3 and can also be characterized by its spherical coordinates:

$$s_{M}(x) = \begin{bmatrix} s(x) \\ \mathcal{R}_{1}(s)(x) \\ \mathcal{R}_{2}(s)(x) \end{bmatrix} = \begin{bmatrix} A(x)\cos\varphi(x) \\ A(x)\sin\varphi(x)\cos\theta(x) \\ A(x)\sin\varphi(x)\sin\theta(x) \end{bmatrix},$$

with $A(x) \in \mathbb{R}^+$ the amplitude of the monogenic signal, $\varphi(x) \in [0, \pi)$ its phase and $\theta(x) \in [-\pi, \pi)$ its orientation.

³M. Felsberg et G. Sommer, The monogenic signal, 2001

Advantages of the Riesz transform:

- Similar to the Gradient operator: detection of contours and orientations
- Very easy to compute in the Fourier domain
- Adapted to a multiscale analysis⁴

⁴ R. Soulard et P. Carré, *Characterization of color images with multiscale monogenic maxima*, 2018. Images from R. Soulard's website.

Monogenic signal: Given a Gaussian random field X and a function $u \in S_0(\mathbb{R}^2)$, the monogenic signal is

$$MX(u) = \langle X, u \rangle_M = \begin{bmatrix} \langle X, u \rangle \\ \langle \mathcal{R}_1 X, u \rangle \\ \langle \mathcal{R}_2 X, u \rangle \end{bmatrix} = (\langle X, u \rangle, \mathcal{R}_X(u)).$$

It is a Gaussian vector and its covariance function is

$$\mathcal{C}_{MX}(u,v) := \mathbb{E}\left(MX(u)MX(v)^*\right) = \Re \int \begin{pmatrix} 1 & i\frac{\xi_1}{|\xi|} & i\frac{\xi_2}{|\xi|} \\ -i\frac{\xi_1}{|\xi|} & \frac{\xi_1}{|\xi|^2} & \frac{\xi_1\xi_2}{|\xi|^2} \\ -i\frac{\xi_2}{|\xi|} & \frac{\xi_1\xi_2}{|\xi|^2} & \frac{\xi_1\xi_2}{|\xi|^2} \end{pmatrix} \hat{u}(\xi)\overline{\hat{v}(\xi)}f(\xi)d\xi.$$

We consider a multiscale representation of the initial random field using a function u, such that $u \in S_0(\mathbb{R}^2)$, with $\int_{\mathbb{R}^2} u(x) dx = 1$ and $u_j(x) = 2^{-j}u(2^{-j}x)$.

Note that in our experiments, we used an undecimated filter bank, given by

$$\begin{cases} \widehat{G}_{1}(\xi) = 1 - e^{-|\xi|^{2}/2}, \\ \widehat{G}_{j}(\xi) = \widehat{G}_{1}(2^{j-1}\xi), \\ \widehat{H}_{j}(\xi) = \sqrt{1 - \widehat{G}_{j}(\xi)^{2}}. \end{cases}$$
(2)

At each scale j, we consider the Riesz transform of the filtered random field

 $\mathcal{R}_{X}(u_{j}) = \left(\langle \mathcal{R}_{1}X, u_{j} \rangle, \langle \mathcal{R}_{2}X, u_{j} \rangle \right),$

and we denote $\tau_x u_i$ the translation of u_i in x, used to evaluate the random field in x.

Proposition

Consider $(\delta, H) \in (0, \pi/2] \times (0, 1)$ and $u \in S_0(\mathbb{R}^2)$ a radial function. If X is an elementary field with spectral density $f_X(\xi) = t_{\delta}(\xi/|\xi|)|\xi|^{-2H-2}$ then $(MX(\tau_x u))_{x \in \mathbb{Z}^2}$ is a centered stationary Gaussian field such that for all $x \in \mathbb{Z}^2$,

$$MX(\tau_{X}u) \stackrel{d}{=} \sqrt{c_{X}(u)} D_{\delta}Z,$$

where

•
$$c_X(u) = \operatorname{Var}(\langle X, u \rangle) = \int_{\mathbb{R}^2} |\widehat{u}(\xi)|^2 f(\xi) d\xi,$$

• $D_{\delta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2} + \frac{\sin(2\delta)}{4\delta}} & 0 \\ 0 & 0 & \sqrt{\frac{1}{2} - \frac{\sin(2\delta)}{4\delta}} \end{pmatrix}$

• $Z \sim \mathcal{N}(0, I_3)$.

Moreover, for a given scale *j*,

$$(MX(\tau_{x}u_{j}))_{x\in\mathbb{Z}^{2}}\stackrel{d}{=}2^{j(H+1)}(MX(\tau_{x}u))_{x\in\mathbb{Z}^{2}}.$$

Riesz structure tensor⁵:

$$J_X(u_j) := \mathbb{E}\left(\mathcal{R}X(u_j)\mathcal{R}X(u_j)^*\right),$$

with $(\lambda^+(u_j), \lambda^-(u_j))$ its largest and smallest eigenvalues.

Coherence index:

$$\chi_X(u_j) = \frac{\lambda^+(u_j) - \lambda^-(u_j)}{\lambda^+(u_j) + \lambda^-(u_j)} \in [0, 1),$$

allows to measure the directional anisotropy.

⁵K. Polisano. Modélisation de textures anisotropes par la transformée en ondelettes monogéniques, 2017

Riesz structure tensor⁵:

$$J_X(u_j) := \mathbb{E}\left(\mathcal{R}X(u_j)\mathcal{R}X(u_j)^*\right),$$

with $(\lambda^+(u_j), \lambda^-(u_j))$ its largest and smallest eigenvalues.

Coherence index:

$$\chi_X(u_j) = \frac{\lambda^+(u_j) - \lambda^-(u_j)}{\lambda^+(u_j) + \lambda^-(u_j)} \in [0, 1),$$

allows to measure the directional anisotropy.

For an elementary field,

$$\lambda^{\pm}(u_j) = 2^{j(2H+2)}\lambda^{\pm}(u) \text{ and } \chi_X(u_j) = \frac{\sin(2\delta)}{2\delta}.$$
(3)

⁵K. Polisano. Modélisation de textures anisotropes par la transformée en ondelettes monogéniques, 2017

Proposition • $(A(\tau_{x}u), \theta(\tau_{x}u), \varphi(\tau_{x}u))_{x \in \mathbb{Z}^{2}}$ is a stationary field.

• Orientation distribution: $\theta(u)$ is independent of $(A(u), \varphi(u))$ and follows an offset normal distribution whose probability density function is π -periodic and given by

$$t\mapsto \frac{\sqrt{1-\chi_X(u)^2}}{2\pi(1-\chi_X(u)\cos(2t))},$$

where $\chi_X(u) \in [0,1)$ is the coherence index.

• Isotropic case: In the isotropic case, if $\delta = \pi/2$, $\theta(u)$ follows a uniform distribution on $(-\pi, \pi)$ and the density function of the phase $\varphi(u)$ is given by

$$\phi \mapsto \frac{|\sin(\phi)|}{(1+\sin(\phi)^2)^{3/2}} \mathbb{1}_{(0,\pi)}(\phi).$$

Monogenic representation of an elementary field

Elementary field with $H = 0.5, \delta = \pi/2$.

Monogenic representation of an elementary field

Monogenic representation of an elementary field

Empirical estimator of the structure tensor:

$$J_j^{\mathsf{emp}} = \frac{1}{N^2} \sum_{x \in G} \mathcal{R}X(\tau_x u_j) \mathcal{R}X(\tau_x u_j)^*,$$

with $(\lambda^{+emp}(u_j), \lambda^{-emp}(u_j))$ its largest and smallest eigenvalues.

Proposition J_i^{emp} is an unbiased estimator and

$$J_{j}^{\mathsf{emp}} \xrightarrow[N \to \infty]{a.s.} J_{X}(u_{j}).$$

$$\tag{4}$$

Besides, $\lambda_j^{\pm emp} \xrightarrow[N \to \infty]{a.s.} \lambda_j^{\pm}$.

Inference using the structure tensor - Coherence index

Coherence index estimation, for 1000 realizations, depending on a) the scale of the monogenic representation j and the degree of anisotropy δ , with H = 0.5 and b) the degree of anisotropy and H, with j = 3.

Inference using the structure tensor - Hurst index

$$\lambda^{\pm}(u_j) = 2^{j(2H+2)}\lambda^{\pm}(u)$$

Estimation of H, obtained by the eigenvalues $\lambda_j^{\pm emp}$ from $J_X(u_j)$ (a). Dotted lines are computed by linear regression and provide an estimator of the Hurst parameter H (b).

Inference using the monogenic signal

Proposition

Squared amplitude: $A(u_j)^2 = \langle X, u_j \rangle^2 + |\mathcal{R}X(u_j)|^2$ and $A(u_j)^2 \stackrel{d}{=} c_X(u_j)A^2$, with $A^2 = |D_{\delta}Z|^2$ for $Z \sim \mathcal{N}(0, I_3)$, D_{δ} and

$$c_X(u_j) = \operatorname{Var}(\langle X, u_j \rangle) = 2^{j(2H+2)} \operatorname{Var}(\langle X, u \rangle).$$

The estimator $V^{ ext{emp}}_j = rac{1}{N^2} \sum\limits_{x \in G} |MX(au_x u_j)|^2$ is unbiased and

$$V_j^{\operatorname{emp}} \xrightarrow[N \to \infty]{a.s.} \mathbb{E} \left(|MX(u_j)|^2 \right).$$

Inference using the monogenic signal

Proposition

Squared amplitude: $A(u_j)^2 = \langle X, u_j \rangle^2 + |\mathcal{R}X(u_j)|^2$ and $A(u_j)^2 \stackrel{d}{=} c_X(u_j)A^2$, with $A^2 = |D_{\delta}Z|^2$ for $Z \sim \mathcal{N}(0, I_3)$, D_{δ} and

$$c_X(u_j) = \operatorname{Var}(\langle X, u_j \rangle) = 2^{j(2H+2)} \operatorname{Var}(\langle X, u \rangle).$$

The estimator $V_j^{\mathsf{emp}} = rac{1}{N^2} \sum\limits_{x \in G} |MX(au_x u_j)|^2$ is unbiased and

$$V_j^{\operatorname{emp}} \xrightarrow[N \to \infty]{a.s.} \mathbb{E} \left(|MX(u_j)|^2 \right).$$

- Two methods based on the Riesz transform to estimate the parameters of elementary fields.
- Using the full monogenic signal seems to produce more stable estimators.

Perspectives:

- Study further the statistical properties of these estimators
- Get similar results for larger categories of self-similar random fields
- Extend to color textures ie multivariate random fields

⁶C.L., H. Biermé, C. Lacaux, P. Carré, *Modélisation de Textures : Champs Gaussiens Autosimilaires et Signal Monogène*, 2023 (accepted)