Unimodular Continuum Spaces

Ali Khezeli

INRIA Paris

Stochastic Geometry Days, Dijon, June 2023

Ali Khezeli (INRIA)

Unimodular Continuum Spaces

1 The Mass Transport Principle in Various Subjects

2 Unimodular Continumm Spaces

1 The Mass Transport Principle in Various Subjects

2 Unimodular Continumm Spaces

3 Palm Theory

3 N 3

Connection between various fields:

- Stationary point processes,
- Unimodular random graphs,
- Unimodular discrete spaces,
- Stationary random measures,
- Scaling limits,
- Borel equivalence relations.

Key property: The mass transport principle (MTP).

• Φ : A stationary point process on \mathbb{R}^d .

- i.e., a random discrete subset of \mathbb{R}^d ,
- s.th., $\forall t \in \mathbb{R}^d : \Phi + t \sim \Phi$.

• The **Palm version** of Φ:

- $\Phi_0 := \Phi$ conditioned on containing 0,
- or Φ seen from a *typical point of* Φ .
- Formally:

$$\mathbb{E}\left[h(\Phi_0)\right] = \frac{1}{\lambda} \mathbb{E}\left[\sum_{x \in \Phi \cap [0,1]^d} h(\Phi - x)\right].$$

Mecke's formula:

For all measurable functions $h(\Phi_0, x) \ge 0$ (for $x \in \mathbb{R}^d$): $\mathbb{E}\left[\sum_{x \in \Phi_0} h(\Phi_0, x)\right] = \mathbb{E}\left[\sum_{x \in \Phi_0} h(\Phi_0 - x, -x)\right].$ • Let $g(\Phi_0, x, y) := h(\Phi_0 - x, y - x) \Rightarrow$

Theorem (MTP)

For all measurable functions $g(\Phi_0, x, y) \ge 0$ that are translation-invariant:

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\Phi_0}g(\Phi_0,\mathbf{0},\mathbf{x})\right]=\mathbb{E}\left[\sum_{\mathbf{x}\in\Phi_0}g(\Phi_0,\mathbf{x},\mathbf{0})\right].$$

- G_{*}: The space of all rooted graphs (G, o) (o ∈ V(G)) up to isomorphisms.
- [*G*, *o*]: A random rooted graph.
- It is called **unimodular** if

$$\mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, \boldsymbol{o}, x)\right] = \mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, x, \boldsymbol{o})\right] \quad (\mathsf{MTP})$$

for all measurable functions $g(G, x, y) \ge 0$ (for $x, y \in V(G)$) that are isometry-invariant.

- Example:
 - In Every finite graph G with a uniformly-random root $o \in V(G)$.
 - 2 Cayley graphs.
 - Example: Any graph constructed *equivariantly* on (the Palm version of) a stationary point process.

Image: A matrix and A matrix

- G_{*}: The space of all rooted graphs (G, o) (o ∈ V(G)) up to isomorphisms.
- [*G*, *o*]: A random rooted graph.
- It is called unimodular if

$$\mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, \boldsymbol{o}, x)\right] = \mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, x, \boldsymbol{o})\right] \quad (\mathsf{MTP})$$

for all measurable functions $g(G, x, y) \ge 0$ (for $x, y \in V(G)$) that are isometry-invariant.

• Example:

- Solution Every finite graph G with a uniformly-random root $o \in V(G)$.
- Cayley graphs.
- **Example**: Any graph constructed *equivariantly* on (the Palm version of) a stationary point process.

- G_{*}: The space of all rooted graphs (G, o) (o ∈ V(G)) up to isomorphisms.
- [*G*, *o*]: A random rooted graph.
- It is called unimodular if

$$\mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, \boldsymbol{o}, x)\right] = \mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, x, \boldsymbol{o})\right] \quad (\mathsf{MTP})$$

for all measurable functions $g(G, x, y) \ge 0$ (for $x, y \in V(G)$) that are isometry-invariant.

Example:

- Solution Every finite graph G with a uniformly-random root $o \in V(G)$.
- ② Cayley graphs.
- Example: Any graph constructed *equivariantly* on (the Palm version of) a stationary point process.

- G_{*}: The space of all rooted graphs (G, o) (o ∈ V(G)) up to isomorphisms.
- [*G*, *o*]: A random rooted graph.
- It is called unimodular if

$$\mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, \boldsymbol{o}, x)\right] = \mathbb{E}\left[\sum_{x \in \boldsymbol{G}} g(\boldsymbol{G}, x, \boldsymbol{o})\right] \quad (\mathsf{MTP})$$

for all measurable functions $g(G, x, y) \ge 0$ (for $x, y \in V(G)$) that are isometry-invariant.

• Example:

- **(**) Every finite graph G with a uniformly-random root $o \in V(G)$.
- ② Cayley graphs.
- Section 2.1.2 Example: Any graph constructed *equivariantly* on (the Palm version of) a stationary point process.

- [**D**, **o**]: A random rooted discrete metric space.
 - **D** should be *boundedly-finite*.
- It is called unimodular if for all measurable functions g(D, x, y) ≥ 0 (for x, y ∈ D) that are isometry-invariant,

$$\mathbb{E}\left[\sum_{x\in \boldsymbol{D}} g(\boldsymbol{D}, \boldsymbol{o}, x)\right] = \mathbb{E}\left[\sum_{x\in \boldsymbol{D}} g(\boldsymbol{D}, x, \boldsymbol{o})\right]. \quad (\mathsf{MTP})$$

- (Almost-) Unification of:
 - Unimodular graphs,
 - Palm version of stationary point processes,
 - Point-stationary point processes.

4. Random Measures

- Φ : A stationary random measure on \mathbb{R}^d .
 - i.e., $\forall t \in \mathbb{R}^d : \Phi + t \sim \Phi$.
- **Example**: Every point process is a random measure.
- Φ_0 : The **Palm version** of Φ ,
 - or Φ seen from a *typical point*.
 - Heuristically:

$$\mathbb{E}\left[g(\Phi_0,0)\right]\longleftrightarrow \int g(\Phi,x)d\Phi(x).$$

Theorem (MTP)

For all measurable functions $g(\Phi_0, x, y) \ge 0$ that are translation-invariant:

$$\mathbb{E}\left[\int g(\Phi_0,0,x)d\Phi_0(x)\right] = \mathbb{E}\left[\int g(\Phi_0,x,0)d\Phi_0(x)\right].$$

• This equation characterizes mass-stationary random measures.

- Assume $[\boldsymbol{G}_n, \boldsymbol{o}_n, \boldsymbol{\mu}_n]$ is such that
 - **G**_n: A finite metric space,
 - $o_n \in G_n$ chosen uniformly at random,
 - μ_n : The counting measure on G_n .
- Assume $[\epsilon_n G_n, o_n, \delta_n \mu_n]$ converges weakly.
- Example:
 - $\mathbb{Z}^d \Rightarrow \mathbb{R}^d$.
 - Random trees \Rightarrow Brownian continuum random tree.
 - Zeros of simple random walk \Rightarrow Zeros of Brownian motion.
 - $\bullet \ \mbox{Cayley graph} \Rightarrow A \ \mbox{locally-compact group}.$
- We will see that there exists an MTP for the scaling limit.

Our goals:

- A unification of the various versions of the MTP.
- Generalizing Palm theory in order to use for studying the dimension of scaling limits.

The Mass Transport Principle in Various Subjects

2 Unimodular Continumm Spaces

3 Palm Theory

э

Random Continuum Spaces

• \mathcal{M}_* := The space of all (X, o, μ) , where:

- X is a metric space (and is *boundedly-compact*),
- $o \in X$ (the root),
- μ is a measure on X (and is *boundedly-finite*).
- \mathcal{M}_* is a Polish space (with the GHP metric).
- A random rmm space (rooted measured metric space): A random element [*X*, *o*, μ] in *M*_{*}.

$$\mathbb{E}\left[f(\boldsymbol{X},\boldsymbol{o},\boldsymbol{\mu})\right] = \int_{\mathcal{M}_{*}} f([X,o,\mu]) d\mathbb{P}([X,o,\mu]).$$

Random Continuum Spaces

• \mathcal{M}_* := The space of all (X, o, μ) , where:

- X is a metric space (and is *boundedly-compact*),
- $o \in X$ (the root),
- μ is a measure on X (and is *boundedly-finite*).
- \mathcal{M}_* is a Polish space (with the GHP metric).
- A random rmm space (rooted measured metric space): A random element [*X*, *o*, μ] in *M*_{*}.

$$\mathbb{E}\left[f(\boldsymbol{X},\boldsymbol{o},\boldsymbol{\mu})\right] = \int_{\mathcal{M}_{\boldsymbol{*}}} f([X,o,\boldsymbol{\mu}]) d\mathbb{P}([X,o,\boldsymbol{\mu}]).$$

Random Continuum Spaces

• \mathcal{M}_* := The space of all (X, o, μ) , where:

- X is a metric space (and is *boundedly-compact*),
- $o \in X$ (the root),
- μ is a measure on X (and is *boundedly-finite*).
- \mathcal{M}_* is a Polish space (with the GHP metric).
- A random rmm space (rooted measured metric space):
 A random element [*X*, *o*, μ] in *M*_{*}.

$$\mathbb{E}\left[f(\boldsymbol{X},\boldsymbol{o},\boldsymbol{\mu})\right] = \int_{\mathcal{M}_{\boldsymbol{*}}} f([\boldsymbol{X},\boldsymbol{o},\boldsymbol{\mu}]) d\mathbb{P}([\boldsymbol{X},\boldsymbol{o},\boldsymbol{\mu}]).$$

Unimodular Continuum Spaces

- \mathcal{M}_{**} := The space of all (X, o, p, μ) .
 - $p \in X$ is called the second root.
- $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$: A random rmm space.

Definition

 $[X, o, \mu]$ is a **unimodular random rmm space** if for all g:

$$\mathbb{E}\left[\int_{\boldsymbol{X}} g(\boldsymbol{o}, \boldsymbol{x}) d\boldsymbol{\mu}(\boldsymbol{x})\right] = \mathbb{E}\left[\int_{\boldsymbol{X}} g(\boldsymbol{x}, \boldsymbol{o}) d\boldsymbol{\mu}(\boldsymbol{x})\right],$$

where $g(\boldsymbol{o}, x) := g(\boldsymbol{X}, \boldsymbol{o}, x, \boldsymbol{\mu})$ and $g : \mathcal{M}_{**} \to \mathbb{R}^{\geq 0}$ is measurable.

$$\mathbb{E}\left[g^{+}(\boldsymbol{o})\right] = \mathbb{E}\left[g^{-}(\boldsymbol{o})\right]$$

- When $\mu = 0$.
- When $\mu = \delta_{o}$.
- Compact spaces:
 - $[\textbf{X}, \mu]$: Any random compact measured metric space,
 - $\boldsymbol{o} \in \boldsymbol{X}$ random with distribution proportional to $\boldsymbol{\mu}$,
 - Then $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ is unimodular.
- Compact unimodular spaces are re-rooting invariant.
- In general, heuristically, the root is a *typical point*.

- When $\mu = 0$.
- When $\mu = \delta_{o}$.
- Compact spaces:
 - $[\mathbf{X}, \boldsymbol{\mu}]$: Any random compact measured metric space,
 - $\boldsymbol{o} \in \boldsymbol{X}$ random with distribution proportional to $\boldsymbol{\mu}$,
 - Then $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ is unimodular.
- Compact unimodular spaces are re-rooting invariant.
- In general, heuristically, the root is a *typical point*.

• (Palm version of) Stationary point processes,

- $[\Phi_0, 0, \operatorname{counting}(\Phi_0)].$
- $[\mathbb{R}^d, 0, \operatorname{counting}(\Phi_0)]$. (ightarrow no need to have $\operatorname{supp}(\mu) = X$)
- Point-stationary point processes,
- Unimodular random graphs,
- Unimodular discrete spaces,
- (Palm version of) Stationary random measures,
- Mass-stationary random measures.
- Unimodular random manifolds (Abért and Biringer, 22).

Lemma

Any weak limit of a sequence of unimodular spaces is unimodular.

Corollary

Scaling limits are unimodular (under the assumptions already mentioned).

Corollary

All compact scaling limits have the **re-rooting invariance property**: If $\mathbf{o}' \in \mathbf{X}$ is random with distribution proportional to μ , then $[\mathbf{X}, \mathbf{o}', \mu] \sim [\mathbf{X}, \mathbf{o}, \mu]$.

Some symmetric spaces are unimodular:

- $[\mathbb{R}^d, 0, \text{Leb}]$ and $[\mathbb{H}^d, o, \text{vol}]$.
- Every *unimodular* topological group (i.e., when the left and right Haar measures are equal).
- Every symmetric metric space (or manifold) with a unimodular symmetry group (e.g., ℍⁿ or Sⁿ),
 - or having an action of a unimodular group that is transitive and measure preserving.

• If $\boldsymbol{S} \subseteq \boldsymbol{X}$ is an equivariant random subset, then

$$\mu(\boldsymbol{S}) > 0 \iff \mathbb{P}[\boldsymbol{o} \in \boldsymbol{S}] > 0.$$

- Invariance under changing the root according to a random walk (generalization of Mecke's stationarity under bijective point shifts).
- Ergodic decomposition.
- Equivalence of amenability and hyperfiniteness.

1 The Mass Transport Principle in Various Subjects

2 Unimodular Continumm Spaces

æ

Random Measures

• $[\textit{\textbf{X}},\textit{\textbf{o}},\pmb{\mu},\Phi]$ is a random element in \mathcal{M}^2_* , where

 $\mathcal{M}^2_* := \{ (X, o, \mu, \varphi) : \varphi \text{ is a measure on } X \}.$

- Assume [X, o, μ, Φ] is unimodular; i.e., the MTP holds when g depends on Φ as well.
- Equivalently:
 - First, sample $[X, o, \mu]$,
 - Then choose a random Φ ∈ M(X) such that its distribution does not depend on o and is isomorphism-invariant.

Definition

We say that Φ is an equivariant random measure on $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$.

Random Measures

• $[\textit{\textbf{X}},\textit{\textbf{o}},\pmb{\mu},\Phi]$ is a random element in \mathcal{M}^2_* , where

$$\mathcal{M}^2_* := \{ (X, o, \mu, \varphi) : \varphi \text{ is a measure on } X \}.$$

- Assume [X, o, μ, Φ] is unimodular; i.e., the MTP holds when g depends on Φ as well.
- Equivalently:
 - First, sample $[\textbf{\textit{X}}, \textbf{\textit{o}}, \pmb{\mu}]$,
 - Then choose a random $\Phi \in \mathcal{M}(\mathbf{X})$ such that its distribution does not depend on \boldsymbol{o} and is isomorphism-invariant.

Definition

We say that Φ is an **equivariant random measure on** $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$.

Random Measures

• $[\textit{\textbf{X}},\textit{\textbf{o}},\pmb{\mu},\Phi]$ is a random element in \mathcal{M}^2_* , where

$$\mathcal{M}^2_* := \{ (X, o, \mu, \varphi) : \varphi \text{ is a measure on } X \}.$$

- Assume [X, o, μ, Φ] is unimodular; i.e., the MTP holds when g depends on Φ as well.
- Equivalently:
 - First, sample $[\textbf{\textit{X}}, \textbf{\textit{o}}, \pmb{\mu}]$,
 - Then choose a random $\Phi \in \mathcal{M}(\mathbf{X})$ such that its distribution does not depend on \boldsymbol{o} and is isomorphism-invariant.

Definition

We say that Φ is an equivariant random measure on $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$.

• $\Phi = \mu$ or any factor of (X, μ) .

- One intensity measure of Φ is also an equivariant (factor) measure: λ(X, μ) := E [Φ(X, μ)].
- **(**) $\Phi :=$ the **Poisson point process** with intensity measure μ .

- $\Phi = \mu$ or any factor of (X, μ) .
- O The intensity measure of Φ is also an equivariant (factor) measure: λ(X, μ) := E [Φ(X, μ)].
- (a) $\Phi :=$ the **Poisson point process** with intensity measure μ .

- $\Phi = \mu$ or any factor of (X, μ) .
- O The intensity measure of Φ is also an equivariant (factor) measure: λ(X, μ) := E [Φ(X, μ)].
- **(3)** $\Phi :=$ the **Poisson point process** with intensity measure μ .

- $\Phi = \mu$ or any factor of (X, μ) .
- O The intensity measure of Φ is also an equivariant (factor) measure: λ(X, μ) := E [Φ(X, μ)].
- **(3)** $\Phi :=$ the **Poisson point process** with intensity measure μ .

• There is no $[0,1]^d$ here! The classical definition does not generalize.

• Other definitions of Palm:

via the Campbell measure.

via a tessellation.

- There is no $[0,1]^d$ here! The classical definition does not generalize.
- Other definitions of Palm:
 - via the Campbell measure.
 - via a tessellation.

Palm Via Tessellation

- Φ : A stationary point process in \mathbb{R}^d .
- Equivariant tessellation: Assigning a cell to each point of Φ equivariantly.

• Fair tessellation: When all cells have equal volumes.

Theorem

If the cell of $\mathbf{x} \in \Phi$ contains 0, then $\Phi - \mathbf{x} \sim \Phi_0$.

Palm Via Tessellation

- Φ : A stationary point process in \mathbb{R}^d .
- Equivariant tessellation: Assigning a cell to each point of Φ equivariantly.

• Fair tessellation: When all cells have equal volumes.

Theorem

If the cell of $\mathbf{x} \in \Phi$ contains 0, then $\Phi - \mathbf{x} \sim \Phi_0$.

Palm Via Tessellation

- Φ : A stationary point process in \mathbb{R}^d .
- Equivariant tessellation: Assigning a cell to each point of Φ equivariantly.

• Fair tessellation: When all cells have equal volumes.

Theorem

If the cell of $\mathbf{x} \in \Phi$ contains 0, then $\Phi - \mathbf{x} \sim \Phi_0$.

Palm Via Tessellation

- Φ : A stationary point process in \mathbb{R}^d .
- Equivariant tessellation: Assigning a cell to each point of Φ equivariantly.

• Fair tessellation: When all cells have equal volumes.

Theorem

If the cell of $\mathbf{x} \in \Phi$ contains 0, then $\Phi - \mathbf{x} \sim \Phi_0$.

A Generalization

∃ →

Image: A math a math

2

A Generalization

Assume a function h(x, y) ≥ 0 is a function depending on Φ (as a factor of Φ) such that

$$\forall y \in \Phi : h^-(y) := \int h(x, y) dx = 1.$$

• Example: Given a fair tessellation, let $h(x, y) := \lambda$ if $x \in \operatorname{cell}(y)$.

Theorem

Palm of Φ is obtained by a biasing and shifting the origin to a point of Φ chosen with distribution proportional to $h(0, \cdot)$; i.e.,

$$\mathbb{P}\left[\Phi_{0} \in A\right] = \frac{1}{\lambda} \mathbb{E}\left[\sum_{y \in \Phi} \mathbb{1}_{A}(\Phi - y)h(0, y)\right],$$

where λ is the intensity of Φ .

A Generalization

Assume a function h(x, y) ≥ 0 is a function depending on Φ (as a factor of Φ) such that

$$\forall y \in \Phi : h^-(y) := \int h(x, y) dx = 1.$$

• Example: Given a fair tessellation, let $h(x, y) := \lambda$ if $x \in \operatorname{cell}(y)$.

Theorem

Palm of Φ is obtained by a biasing and shifting the origin to a point of Φ chosen with distribution proportional to $h(0, \cdot)$; i.e.,

$$\mathbb{P}\left[\Phi_{0} \in A\right] = \frac{1}{\lambda} \mathbb{E}\left[\sum_{y \in \Phi} 1_{A}(\Phi - y)h(0, y)\right],$$

where λ is the intensity of Φ .

Palm on Unimodular Spaces

• Assume $h: \mathcal{M}^2_{**} \to \mathbb{R}^{\geq 0}$ is such that for all (X, y, μ, φ) ,

$$h^{-}(y) := \int_{X} h(x, y) d\mu(x) = 1 \quad (\text{if } \mu \neq 0).$$

• Bias and choose a new root $\sim h(\boldsymbol{o}, \cdot)\Phi$; i.e.,

Definition

Define a measure Q on \mathcal{M}^2_* by:

$$Q(A) := \mathbb{E}\left[\int_{\boldsymbol{X}} 1_A(\boldsymbol{X}, y, \boldsymbol{\mu}, \Phi) h(\boldsymbol{o}, y) d\Phi(y)\right]$$

Define the **intensity** of Φ by $\lambda := |Q| = Q(\mathcal{M}_*^2)$. Define the probability measure $\mathbb{P}_0 := \frac{1}{\lambda}Q$ (if $0 < \lambda < \infty$). \mathbb{P}_0 is the distribution of the **Palm version**.

Ali Khezeli (INRIA)

< □ > < □ > < □ > < □ > < □ > < □ >

э

Palm on Unimodular Spaces

• Assume $h: \mathcal{M}^2_{**} \to \mathbb{R}^{\geq 0}$ is such that for all (X, y, μ, φ) ,

$$h^{-}(y) := \int_{X} h(x, y) d\mu(x) = 1 \quad (\text{if } \mu \neq 0).$$

• Bias and choose a new root $\sim h(\boldsymbol{o}, \cdot)\Phi$; i.e.,

Definition

Define a measure Q on \mathcal{M}^2_* by:

$$Q(A) := \mathbb{E}\left[\int_{\boldsymbol{X}} 1_A(\boldsymbol{X}, y, \boldsymbol{\mu}, \Phi) \boldsymbol{h}(\boldsymbol{o}, y) d\Phi(\boldsymbol{y})\right]$$

Define the **intensity** of Φ by $\lambda := |Q| = Q(\mathcal{M}^2_*)$. Define the probability measure $\mathbb{P}_0 := \frac{1}{\lambda}Q$ (if $0 < \lambda < \infty$). \mathbb{P}_0 is the distribution of the **Palm version**.

Ali Khezeli (INRIA)

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Campbell Formula)

For all measurable functions $g \ge 0$ on \mathcal{M}^2_{**} , by denoting $g(x, y) := g(\mathbf{X}, x, y, \mu, \Phi)$,

$$\mathbb{E}\left[\int_{\boldsymbol{X}} g(\boldsymbol{o}, y) d\Phi(y)\right] = \lambda \mathbb{E}_{\boldsymbol{0}}\left[\int_{\boldsymbol{X}} g(x, \boldsymbol{o}) d\boldsymbol{\mu}(x)\right]$$

In addition, \mathbb{P}_0 is the unique probability measure on \mathcal{M}^2_* with this property.

• **Corollary**. Palm does not depend on the choice of *h*.

Unimodularity of Palm

• $[\mathbf{X}, \mathbf{o}, \mathbf{\mu}, \Phi]$ unimodular.

Lemma Under \mathbb{P}_0 , $[\mathbf{X}, \mathbf{o}, \Phi]$ is unimodular, and so is $[\mathbf{X}, \mathbf{o}, \Phi, \mu]$.

Corollary

Under \mathbb{P}_0 , the Palm of μ (as random measure on $[\mathbf{X}, \mathbf{o}, \Phi]$) is \mathbb{P} .

Palm inversion = Palm

æ

Unimodularity of Palm

• $[\mathbf{X}, \mathbf{o}, \mathbf{\mu}, \Phi]$ unimodular.

Lemma Under \mathbb{P}_0 , $[\mathbf{X}, \mathbf{o}, \Phi]$ is unimodular, and so is $[\mathbf{X}, \mathbf{o}, \Phi, \mu]$.

Corollary

Under \mathbb{P}_0 , the Palm of μ (as random measure on $[\mathbf{X}, \mathbf{o}, \Phi]$) is \mathbb{P} .

Palm inversion = Palm

æ

Unimodularity of Palm

• $[\mathbf{X}, \mathbf{o}, \mathbf{\mu}, \Phi]$ unimodular.

Lemma Under \mathbb{P}_0 , $[\mathbf{X}, \mathbf{o}, \Phi]$ is unimodular, and so is $[\mathbf{X}, \mathbf{o}, \Phi, \mu]$.

Corollary

Under \mathbb{P}_0 , the Palm of μ (as random measure on $[\mathbf{X}, \mathbf{o}, \Phi]$) is \mathbb{P} .

Palm inversion = Palm

æ

Examples

• If $\Phi = \mu|_S$, where S is a factor subset,

- Palm = conditioning on $\boldsymbol{o} \in S$.
- If Φ is the Poisson point process with intensity measure $c\mu$,
 - Palm version is $\Phi \cup \{ \boldsymbol{o} \}$.
- Planar Duals:
 - [*G*, *o*]: a unimodular planar graph.
 - To make the dual G' of G unimodular:
 - $X := G \cup G'$,
 - $\mu :=$ the counting measure of ${\it G}$,
 - $\Phi :=$ the counting measure of **G**',
 - it is enough to consider the Palm of $\Phi.$
- Adding vertices and edges to a unimodular graph (unimodular extension) is an instance of Palm.

Thank you!

<ロト <問ト < 国ト < 国ト

3

Two equivalent definitions:

- If $A \subseteq \mathcal{M}_*$ is measurable, then $S := S(X, \mu) := \{y \in X : (X, y, \mu) \in A\}$ is called a **factor subset**.
- A factor subset is a map (X, µ) → S(X, µ) ⊆ X such that it is isometry-equivariant and A := {(X, y, µ) : y ∈ S(X, µ)} is measurable.

Lemma (Everything Happens at the Root)

If $[X, o, \mu]$ is unimodular and S is a factor subset, then:

$$o \in S \text{ a.s.} \iff \mu(X \setminus S) = 0 \text{ a.s.},$$

 $\mathbb{P}[\mu(S) > 0] > 0 \iff \mathbb{P}[o \in S] > 0.$

Corollary

 $\boldsymbol{o} \in \operatorname{supp}(\boldsymbol{\mu}) \boldsymbol{a.s.}$

Ali Khezeli (INRIA)

June 2023

< □ > < □ > < □ > < □ > < □ > < □ >

25 / 25

э

Two equivalent definitions:

- If $A \subseteq \mathcal{M}_*$ is measurable, then $S := S(X, \mu) := \{y \in X : (X, y, \mu) \in A\}$ is called a **factor subset**.
- A factor subset is a map (X, µ) → S(X, µ) ⊆ X such that it is isometry-equivariant and A := {(X, y, µ) : y ∈ S(X, µ)} is measurable.

Lemma (Everything Happens at the Root)

If $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ is unimodular and S is a factor subset, then:

$$\boldsymbol{o} \in S \text{ a.s.} \quad \Longleftrightarrow \quad \boldsymbol{\mu}(X \setminus S) = 0 \text{ a.s.} ,$$

 $\mathbb{P}\left[\boldsymbol{\mu}(S) > 0\right] > 0 \quad \Longleftrightarrow \quad \mathbb{P}\left[\boldsymbol{o} \in S\right] > 0.$

Corollary

 $\boldsymbol{o} \in \operatorname{supp}(\boldsymbol{\mu}) \boldsymbol{a.s.}$

Ali Khezeli (INRIA)

June 2023

< □ > < □ > < □ > < □ > < □ > < □ >

25 / 25

э

Root-Change

- $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$: unimodular
- Assume for each (X, o, μ), a probability measure α = α_(X,o,μ) on X is given (isometry-equivariant with some measurability property).
- Let $\boldsymbol{o}' \in \boldsymbol{X}$ be chosen with distribution α .

Lemma

- [X, o', μ] ~ [X, o, μ] if μ is a stationary measure for the Markovian kernel on X.
- **(**) This holds if f(o, x) is the density of α w.r.t. μ at x and $f^{-}(o) = 1$ a.s., where $f^{-}(o) := \int_{X} f(y, o) \mu(dy)$.
- If f(o, x) is the density of α w.r.t. μ at x (if exists), then the density of [X, o', μ] w.r.t. [X, o, μ] is f⁻(o).
 - This generalizes Mecke's theorem (invariance under bijective point-shifts).

Ali Khezeli (INRIA)

Root-Change

- $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$: unimodular
- Assume for each (X, o, μ), a probability measure α = α_(X,o,μ) on X is given (isometry-equivariant with some measurability property).
- Let $\mathbf{o}' \in \mathbf{X}$ be chosen with distribution α .

Lemma

- [X, o', μ] ~ [X, o, μ] if μ is a stationary measure for the Markovian kernel on X.
- **1** This holds if f(o, x) is the density of α w.r.t. μ at x and $f^{-}(o) = 1$ a.s., where $f^{-}(o) := \int_{X} f(y, o) \mu(dy)$.
- If f(o, x) is the density of α w.r.t. μ at x (if exists), then the density of [X, o', μ] w.r.t. [X, o, μ] is f⁻(o).
 - This generalizes Mecke's theorem (invariance under bijective point-shifts).

Ali Khezeli (INRIA)

A (1) > A (2) > A

э

Random Walk

• Fix h_0 such that $h_0^+(\cdot) = 1$ and h > 0.

$$h(x,y) := \int_X \frac{h_0(x,z)h_0(y,z)}{h_0^-(z)} d\mu(z).$$

• So,
$$h^+(\cdot) = h^-(\cdot) = 1$$
.

- Let $[X, o, \mu]$ be random.
- Define a random walk $(\mathbf{x}_n)_n$ on \mathbf{X} such that $\mathbf{x}_0 = \mathbf{o}$ and $\mathbf{x}_{n+1} \sim h(\mathbf{x}_n, \cdot) \boldsymbol{\mu}$.

Theorem

 $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ is unimodular if and only if $(\mathbf{x}_n)_n$ is stationary and reversible; i.e.,

$$[X, x_1, \mu, (x_{n+1})_n] \sim [X, o, \mu, (x_n)],$$

 $[X, o, \mu, (x_{-n})_n] \sim [X, o, \mu, (x_n)].$

< 1 k

Random Walk

• Fix h_0 such that $h_0^+(\cdot) = 1$ and h > 0.

$$h(x,y) := \int_X \frac{h_0(x,z)h_0(y,z)}{h_0^-(z)} d\mu(z).$$

• So,
$$h^+(\cdot) = h^-(\cdot) = 1$$
.

- Let $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ be random.
- Define a random walk $(\mathbf{x}_n)_n$ on \mathbf{X} such that $\mathbf{x}_0 = \mathbf{o}$ and $\mathbf{x}_{n+1} \sim h(\mathbf{x}_n, \cdot) \boldsymbol{\mu}$.

Theorem

 $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ is unimodular if and only if $(\mathbf{x}_n)_n$ is stationary and reversible; i.e.,

$$[X, x_1, \mu, (x_{n+1})_n] \sim [X, o, \mu, (x_n)],$$

 $[X, o, \mu, (x_{-n})_n] \sim [X, o, \mu, (x_n)].$

Random Walk

• Fix h_0 such that $h_0^+(\cdot) = 1$ and h > 0.

$$h(x,y) := \int_X \frac{h_0(x,z)h_0(y,z)}{h_0^-(z)} d\mu(z).$$

• So,
$$h^+(\cdot) = h^-(\cdot) = 1$$
.

- Let $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ be random.
- Define a random walk $(\mathbf{x}_n)_n$ on \mathbf{X} such that $\mathbf{x}_0 = \mathbf{o}$ and $\mathbf{x}_{n+1} \sim h(\mathbf{x}_n, \cdot) \boldsymbol{\mu}$.

Theorem

 $[\mathbf{X}, \mathbf{o}, \mu]$ is unimodular if and only if $(\mathbf{x}_n)_n$ is stationary and reversible; i.e.,

$$[\boldsymbol{X}, \boldsymbol{x}_1, \boldsymbol{\mu}, (\boldsymbol{x}_{n+1})_n] \sim [\boldsymbol{X}, \boldsymbol{o}, \boldsymbol{\mu}, (\boldsymbol{x}_n)],$$
$$[\boldsymbol{X}, \boldsymbol{o}, \boldsymbol{\mu}, (\boldsymbol{x}_{-n})_n] \sim [\boldsymbol{X}, \boldsymbol{o}, \boldsymbol{\mu}, (\boldsymbol{x}_n)].$$

- An event A is (root-change-) invariant if $[X, o, \mu] \in A \Rightarrow [X, y, \mu] \in A, \forall y \in X.$
- **Definition:** A unimodular rmm space $[X, o, \mu]$ is ergodic when $\mathbb{P}[A] \in \{0, 1\}$ for every invariant event A.

Theorem (Ergodic Decomposition)

- **(1)** $[\mathbf{X}, \mathbf{o}, \mu]$ is ergodic if and only if the random walk (\mathbf{x}_n) is ergodic.
- Every unimodular probability measure can be uniquely written as a mixture of ergodic probability measures.

- An event A is (root-change-) invariant if $[X, o, \mu] \in A \Rightarrow [X, y, \mu] \in A, \forall y \in X.$
- **Definition:** A unimodular rmm space $[X, o, \mu]$ is ergodic when $\mathbb{P}[A] \in \{0, 1\}$ for every invariant event A.

Theorem (Ergodic Decomposition)

- **(a)** $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ is ergodic if and only if the random walk (\mathbf{x}_n) is ergodic.
- Every unimodular probability measure can be uniquely written as a mixture of ergodic probability measures.

- An event A is (root-change-) invariant if $[X, o, \mu] \in A \Rightarrow [X, y, \mu] \in A, \forall y \in X.$
- **Definition:** A unimodular rmm space $[X, o, \mu]$ is ergodic when $\mathbb{P}[A] \in \{0, 1\}$ for every invariant event A.

Theorem (Ergodic Decomposition)

- **(** $\mathbf{X}, \mathbf{o}, \mathbf{\mu}$ **]** is ergodic if and only if the random walk (\mathbf{x}_n) is ergodic.
- Every unimodular probability measure can be uniquely written as a mixture of ergodic probability measures.

• Let $[\mathbf{X}, \mathbf{o}, \boldsymbol{\mu}]$ be unimodular.

Theorem (Amenability)

The following are equivalent:

- There exists a local mean.
- There exists an approximate mean.
- Hyperfiniteness.
- Folner condition.

Mean

- To (almost) every (X, o, μ) , assign a map $m : L^{\infty}(X, \mu) \to \mathbb{R}$ such that:
 - *m* is a positive linear functional.
 - *m* is isomorphism-invariant.
 - $\forall y \in X : m_{(X,o,\mu)} = m_{(X,y,\mu)}.$
 - Some measurability condition.
- Definition: This is called a Local mean.
- To (almost) every (X, o, μ) , assign a sequence $\lambda_n : X \to \mathbb{R}^{\geq 0}$ such that:
 - λ_n is isomorphism-invariant and measurable.
 - $\forall y \in \mathbf{X} : \int_{\mathbf{X}} \lambda_n(y, \cdot) d\boldsymbol{\mu} = 1$ a.s.
 - $\forall y \in \mathbf{X} : ||\lambda_n(\mathbf{o}, \cdot) \lambda_n(y, \cdot)||_1 \to 0$ a.s.
- **Definition:** This is called an **approximate mean**.

Mean

- To (almost) every (X, o, μ) , assign a map $m : L^{\infty}(X, \mu) \to \mathbb{R}$ such that:
 - *m* is a positive linear functional.
 - *m* is isomorphism-invariant.
 - $\forall y \in X : m_{(X,o,\mu)} = m_{(X,y,\mu)}.$
 - Some measurability condition.
- Definition: This is called a Local mean.
- To (almost) every (X, o, μ) , assign a sequence $\lambda_n : X \to \mathbb{R}^{\geq 0}$ such that:
 - λ_n is isomorphism-invariant and measurable.
 - $\forall y \in \mathbf{X} : \int_{\mathbf{X}} \lambda_n(y, \cdot) d\boldsymbol{\mu} = 1$ a.s.
 - $\forall y \in \boldsymbol{X} : ||\lambda_n(\boldsymbol{o}, \cdot) \lambda_n(y, \cdot)||_1 \to 0 \text{ a.s.}$
- Definition: This is called an approximate mean.

Hyperfiniteness

- To (almost) every (X, o, μ), assign a partition Π of X such that it is invariant, measurable, and every element of Π has finite mass w.r.t. μ.
- Allow Π to be random; e.g., depending on a random measure on (X, o, μ) .
- Definition: This is called an equivariant finite partition.

Definition (Hyperfiniteness)

Three definitions:

- **1** nested equivariant finite partitions Π_n s.th. $\mathbb{P}\left[\bigcup_n \Pi_n(\boldsymbol{o}) = \boldsymbol{X}\right] = 1$.
- ② ∃ nested equivariant finite partitions Π_n s.th. $\forall r < \infty : \mathbb{P}[\exists n : B_r(\mathbf{o}) \subseteq \Pi_n(\mathbf{o})] = 1.$
- ③ $\forall r < \infty, \forall \epsilon > 0, \exists$ an equivariant finite partition Π s.th. $\mathbb{P}[B_r(\boldsymbol{o}) \subseteq \Pi(\boldsymbol{o})] < \epsilon.$

Definition

Two definitions:

() $\forall r < \infty, \forall \epsilon > 0, \exists$, an equivariant finite partition Π s.th.

$$\mathbb{E}\left[\frac{\boldsymbol{\mu}(\partial_{r}\boldsymbol{\Pi}(\boldsymbol{o}))}{\boldsymbol{\mu}(\boldsymbol{\Pi}(\boldsymbol{o}))}\right] < \epsilon.$$

2 \exists equivariant nested finite partitions Π_n s.th.

$$\forall r: \frac{\mu(\partial_r \Pi_n(\boldsymbol{o}))}{\mu(\Pi_n(\boldsymbol{o}))} \to 0, \quad a.s.$$

- Let Φ be the marked Poisson point process on X with intensity measure μ.
- Consider the Palm version of Φ .
- This gives a countable Borel equivalence relation *R* and the Palm distribution is an **invariant measure**.
- We prove that each definition is equivalent to the analogous definition for *R*.
- We use the amenability theorem for Borel equivalence relations.

- Let Φ be the marked Poisson point process on X with intensity measure μ.
- Consider the Palm version of Φ.
- This gives a countable Borel equivalence relation *R* and the Palm distribution is an **invariant measure**.
- We prove that each definition is equivalent to the analogous definition for *R*.
- We use the amenability theorem for Borel equivalence relations.

- Let Φ be the marked Poisson point process on X with intensity measure μ.
- Consider the Palm version of Φ .
- This gives a countable Borel equivalence relation *R* and the Palm distribution is an **invariant measure**.
- We prove that each definition is equivalent to the analogous definition for *R*.
- We use the amenability theorem for Borel equivalence relations.