Granulometric analysis of maltodextrin particles observed by scanning electron microscopy Geosto days, Dijon, 2023

A. Bottenmuller, L. Théodon, J. Debayle, D. T. Vélez, M. Tourbin, C. Frances, Y. Gavet.

CNRS, UMR 5307 LGF, Mines Saint-Etienne, Univ. Lyon, France CNRS, UMR 5503 LGC, Univ. Toulouse, France

A.B. et al. (ENSM-SE / LGF)

Granulometry of maltodextrin

Organization of the talk

A bit of image processing

A bit of simulation

Validation/Comparison

イロト イヨト イヨト

A.B. et al. (ENSM-SE / LGF)

Granulometry of maltodextri

2 / 20

э

Context: pharmaceutics

- Particles of maltodextrin
- Encapsulation of Chlorogenic Acid (CGA)
 5-O-caffeoylquinic acid (5-CQA)
- Spray-Drying technique
- Applications: food, pharmaceutics, cosmetics

イロト イヨト イヨト

э

Observation: Scanning electron microscopy

Image observation

- Spheres (or near)
- SEM characteristics:
 - 3D like effect
 - Depth effect

Objectives

- Particles Size Distribution (PSD)
- Linked to delivery properties of the active molecule

Organisation of the talk

3 segmentation methods

- Stochastic Watershed
- Circular Hough Transform
- Curvature Analysis Method

Image simulation and model

- Simulate SEM images
- Specific PSD

Validation/Comparison

- Segmentation results
- PSD from Laser Diffraction
- PSD of simulated images

Organisation of the talk

3 segmentation methods

- Stochastic Watershed
- Circular Hough Transform
- Curvature Analysis Method

Image simulation and model

- Simulate SEM images
- Specific PSD

Validation/Comparison

- Segmentation results
- PSD from Laser Diffraction
- PSD of simulated images

Stochastic Watershed (SW)

Principles

- Watershed (mathematical morphology)
- Constrained by random markers
- Repeat the process
- Accumulate the results
- Distance transform, local maxima and circles computation

Drawbacks

- Number of markers
- Spatial distribution ?

Circular Hough Transform (CHT)

Principles

- Contours detection (gradient and binarization)
- Hough Transform for circles detection

Drawbacks

- Many overlapping circles
- Partially occluded circles not detected
- Different contours are mixed

Algorithm details: minimum MSE map

Original image

Algorithm details: minimum MSE map

Gradient magnitude

Curvature Analyse Method

Our proposition: Curvature Analyse Method (CAM)

Algorithm details: minimum MSE map

Zoom en blue circular window. Centered at point p_c .

Curvature Analyse Method

Our proposition: Curvature Analyse Method (CAM)

Algorithm details: minimum MSE map

Line obtained by minimizing E on grayscale points.

$$E_{p_c}(\alpha) = \frac{1}{\sum_{i=1}^n \nabla(p_i)} \sum_{i=1}^n d(p_i, L_{p_c, \alpha})^2 \nabla(p_i)$$

$$d(p_i, L_{p_c,\alpha}) = \frac{(y_i - y_c) - \alpha(x_i - x_c)}{\sqrt{1 + \alpha^2}}$$

Algorithm details: minimum MSE map

Final minimum MSE map.

Curvature Analyse Method

Our proposition: Curvature Analyse Method (CAM)

Algorithm details: extraction of arcs

Binarization.

Curvature Analyse Method

Our proposition: Curvature Analyse Method (CAM)

Algorithm details: extraction of arcs

Skeleton.

Algorithm details: extraction of arcs

Cleaning.

Algorithm details: extraction of arcs

Intersection areas and curvature irregularities.

Algorithm details: extraction of arcs

Split arcs.

Algorithm details: circles association and rearrangement

Minimization process for circles detection

$$E_{\text{circle}}(p_c, r) = \frac{1}{n} \sum_{i=1}^{n} ((x_i - x_c)^2 + (y_i - y_c)^2 - r^2)^2$$

Algorithm details: circles association and rearrangement

Merging close circles green and blue.

Algorithm details: circles association and rearrangement

Merging arc-sharing circles.

Algorithm details: circles association and rearrangement

Remove circles with a grayscale criterion.

Algorithm details: circles association and rearrangement

Final result.

A.B. et al. (ENSM-SE / LGF)

Granulometry of maltodextrir

クへで 9/20

Organisation of the talk

3 segmentation methods

- Stochastic Watershed
- Circular Hough Transform
- Curvature Analysis Method

Image simulation and model

- Simulate SEM images
- Specific PSD

Validation/Comparison

- Segmentation results
- PSD from Laser Diffraction
- PSD of simulated images

Organisation of the talk

3 segmentation methods

- Stochastic Watershed
- Circular Hough Transform
- Curvature Analysis Method

Image simulation and model

- Simulate SEM images
- Specific PSD

Validation/Comparison

- Segmentation results
- PSD from Laser Diffraction
- PSD of simulated images

Algorithm details

Binary random (circular) shape.

イロト イヨト イヨト

э

Algorithm details

Illumination effects (orientation).

イロト イヨト イヨト

э

Algorithm details

Shadow effects.

イロト イヨト イヨト

Э

Algorithm details

Several grains, with depth effect.

Algorithm details

Final result, with noise and blur.

Summary: grains generator

12 / 20

Э

イロト イボト イヨト

Simulation vs real image

A.B. et al. (ENSM-SE / LGF)

Organisation of the talk

3 segmentation methods

- Stochastic Watershed
- Circular Hough Transform
- Curvature Analysis Method

Image simulation and model

- Simulate SEM images
- Specific PSD

Validation/Comparison

- Segmentation results
- PSD from Laser Diffraction
- PSD of simulated images

Organisation of the talk

3 segmentation methods

- Stochastic Watershed
- Circular Hough Transform
- Curvature Analysis Method

Image simulation and model

- Simulate SEM images
- Specific PSD

Validation/Comparison

- Segmentation results
- PSD from Laser Diffraction
- PSD of simulated images

Segmentation results

- CHT
- SW
- CAM

A.B. et al. (ENSM-SE / LGF)

15 / 20

Particle Size Distribution: Laser Diffraction technique

Objective: PSD

- Delivery properties of Active Ingredient
- Abscissa: size (radius) in μm
- log scale
- Ordinates: number or volume (density)

Particle Size Distribution: Laser Diffraction technique

Objective: PSD

- Delivery properties of Active Ingredient
- Abscissa: size (radius) in μm
- log scale
- Ordinates: number or volume (density)

Comparison of SW/CHT/CAM on simulated images

イロト イヨト イヨト

э

Granulometry of maltodextrin

Comparison of SW/CHT/CAM with Laser Diffraction LD

Comparison of SW/CHT/CAM with Laser Diffraction LD

Discussion and perspectives

Discussion

- Image segmentation for CAM seems better
- Good agreement for CAM in bimodal or lognormal PSD
- Other methods (SW, CHT) shows a few drawbacks
- Laser Diffraction also presents a few drawbacks (aggregates)

Conclusion

- Method for simulating SEM images of spherical particles
- Method for segmenting these images
- Good agreement with particle size distribution

Perspectives

- Deep learning segmentation
- Synthetic database

We are hiring !

- Maître Assistant (Maître de Conf.) Associé (CDD)
- 3 years, in Saint-Etienne
- Subject: open to proposition, but mainly stochastic geometry, computational geometry, image processing, applied maths
- CNRS lab: process engineering and materials
- Preparation for HDR
- Supervision of PhD thesis + participation to ongoing projects
- Direct research projects with ORANO (nuclear company)
- sept.2024: Minkowski functionals and fuel cells (3D microstructures)
- Teaching: around 50h
- What's next: Maître Assistant position